Skip to main content

Advertisement

Log in

Heterologous expression of a hydrogenase gene in Enterobacter aerogenes to enhance hydrogen gas production

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The hydrogenase gene from Enterobacter cloacae (IIT-BT 08) was amplified and inserted into a prokaryotic expression vector to create a recombinant plasmid (pGEX-4T-2-Cat/hydA). The recombinant plasmid was transformed into a hydrogen-producing strain of Enterobacter aerogenes (ATCC13408). SDS–PAGE and western blot analysis confirmed the successful expression of the GST-tagged hydA protein. Anaerobic fermentation for the production of hydrogen from glucose was investigated using E. aerogenes ATCC13408 and the recombinant strain. The results showed that the hydrogen yield markedly increased, from 442.82 ± 22.61 ml/g glucose in the ATCC13408 strain to 864.02 ± 36.8 ml/g glucose in the recombinant. The maximum rate of hydrogen production was found to be 53.49 ± 3.34 ml l−1 h−1 using 1% (w/v) glucose as the substrate at pH 6.0 and a reaction temperature of 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams MW (1990) The structure and mechanism of iron-hydrogenase. Biochim Biophys Acta 1020:115–145

    Article  CAS  Google Scholar 

  • Adams MW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282:1842–1843

    Article  CAS  Google Scholar 

  • Asada Y, Koike Y, Schnackenberg J, Miyake M, Uemura I, Miyake J (2000) Heterologous expression of clostridial hydrogenase in the Cyanobacterium synechococcus PCC7942. Biochim Biophys Acta 1490:269–278

    CAS  Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19:383–388

    Article  CAS  Google Scholar 

  • Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41:682–688

    Article  CAS  Google Scholar 

  • Das D, Nejat VT (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • Gao GJ, Le DH, Huang LF, Lu HM, Narumi I, Hua YJ (2006) Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol Lett 257:195–201

    Article  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases–ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153

    Article  CAS  Google Scholar 

  • Kaji M, Taniguchi Y, Matsushita O, Katayama S, Miyata S, Morita S, Okabe A (1999) The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol Lett 181:329–336

    Article  CAS  Google Scholar 

  • Karube I, Urano N, Yamada T, Hirochika H, Sakaguchi K (1983) Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli. FEBS Lett 158:119–122

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  • Maeda T, Vardar G, Self WT, Wood TK (2007) Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnol 7:25

    Article  Google Scholar 

  • Mishra J, Khurana S, Kumar N, KGhosh A, Das D (2004) Molecular cloning, characterization, and over expression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochem Biophys Res Commun 324:679–685

    Article  CAS  Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    Article  CAS  Google Scholar 

  • Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrogen Energy 27:1399–1405

    Article  CAS  Google Scholar 

  • Nandi R, Bhattacharya PK, Bhaduri AN, Sengupta S (1992) Synthesis and lysis of formate by immobilized cells of Escherichia coli. Biotechnol Bioeng 39:775–780

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  Google Scholar 

  • Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 83:358–363

    Article  CAS  Google Scholar 

  • Santangelo JD, Dürre P, Woods RD (1995) Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262. Microbiol 141:171–180

    Article  CAS  Google Scholar 

  • Tanisho S, Ishiwata Y (1994) Continuous hydrogen-production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrogen Energy 19:807–812

    Article  CAS  Google Scholar 

  • Tanisho S, Suzuki Y, Wakao N (1987) Fermentative hydrogen evolution by Enterobacter aerogenes E-82005. Int J Hydrogen Energy 12:623–627

    Article  CAS  Google Scholar 

  • Tanisho S, Kamiya N, Wakao N (1989) Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochim Biophys Acta 973:1–6

    Article  CAS  Google Scholar 

  • Tanisho N, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23:559–563

    Article  CAS  Google Scholar 

  • Toshinari M, Viviana ST, Thomas KW (2008) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39

    Google Scholar 

  • Voordouw G (1992) Evolution of hydrogenase genes. Adv Inorg Chem 26:397–410

    Article  Google Scholar 

  • Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y (1995) Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 80:571–574

    Article  CAS  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  Google Scholar 

  • Zhao HX, Ma K, Lu Y, Zhang C, Wang LY, Xing XH (2009) Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production. Int J Hydrogen Energy 34:186–194

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Program of High-tech Research and Development of China (863 High-Tech Program, No. 2006AAO5Z122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Xi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, JF., Song, WL., Cheng, J. et al. Heterologous expression of a hydrogenase gene in Enterobacter aerogenes to enhance hydrogen gas production. World J Microbiol Biotechnol 26, 177–181 (2010). https://doi.org/10.1007/s11274-009-0139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0139-7

Keywords

Navigation