Skip to main content

Advertisement

Log in

Effect of soybean oil on the production of mycelial biomass and pleuromutilin in the shake-flask culture of Pleurotus mutilis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Effect of soybean oil on mycelial biomass and pleuromutilin biosynthesis by Pleurotus mutilis-04 was investigated in shake flask culture. The maximum pleuromutilin production and mycelial biomass were 8.32 ± 0.02 g l−1 and 49.10 ± 1.00 g l−1 when 20 g l−1 soybean oil was fed at 24 and 96 h respectively. A repeated fed-batch fermentation strategy with feeding 3 g l−1 soybean oil from 96 to 144 h at 24 h intervals was developed successfully to maintain mycelial growth and provide abundant fatty acids for pleuromutilin biosynthesis. Compared with glucose as the sole carbon source, soybean oil was obviously beneficial for the production of pleuromutilin. The results suggested that manipulation of metabolic regulation by soybean oil was an effective way to enhance the production pleuromutilin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Fattah YR (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box–Behnken experimental design. Biotechnol Lett 24:1217–1222. doi:10.1023/A:1016167416712

    Article  CAS  Google Scholar 

  • Benkortbi O, Hanini S, Bentahar F (2007) Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochem Eng J 36:14–18. doi:10.1016/j.bej.2006.06.015

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microb Biotechnol 49:333–336. doi:10.1007/s002530051178

    Article  CAS  Google Scholar 

  • Gallo M, Katz E (1972) Regulation of secondary metabolite biosynthesis—catabolite repression of Phenoxazinone synthase and Actinomycin formation by Glucose. J Bacteriol 109:659–667

    CAS  Google Scholar 

  • Hamedi J, Malekzadeh F, Niknam V (2002) Improved production of erythromycin by Saccharopolyspora erythraea by various plant oils. Biotechnol Lett 24:697–700. doi:10.1023/A:1015282016388

    Article  CAS  Google Scholar 

  • Hamedi J, Malekzadeh F, Saghafi-nia AE (2004) Enhancing of erythromycin production by Saccharopolyspora erythraea with common and uncommon oils. J Ind Microbiol Biotechnol 31:447–456. doi:10.1007/s10295-004-0166-1

    Article  CAS  Google Scholar 

  • Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2008a) Pleuromutilin derivatives having a purine ring. Part 1: new compounds with promising antibacterial activity against resistant gram-positive pathogens. Med Chem Lett 18:3556–3561. doi:10.1016/j.bmcl.2008.05.011

    Article  CAS  Google Scholar 

  • Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2008b) Water-soluble pleuromutilin derivative with excellent in vitro and in vivo antibacterial activity against gram-positive pathogens. J Med Chem 51:1991–1994. doi:10.1021/jm8000136

    Article  CAS  Google Scholar 

  • Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2009a) Pleuromutilin derivatives having a purine ring. Part 2: influence of the central spacer on the antibacterial activity against gram-positive pathogens. Med Chem Lett 19:170–174. doi:10.1016/j.bmcl.2008.10.123

    Article  CAS  Google Scholar 

  • Hirokawa Y, Kinoshita H, Tanaka T, Nakamura T, Fujimoto K, Kashimoto S, Kojima T, Kato S (2009b) Pleuromutilin derivatives having a purine ring. Part 3: synthesis and antibacterial activity of novel compounds possessing a piperazine ring spacer. Med Chem Lett 19:175–179. doi:10.1016/j.bmcl.2008.10.127

    Article  CAS  Google Scholar 

  • Hsieh C, Wang HL, Chen CC, Hsu TH, Tseng MH (2008) Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa. Biochem Eng J 38:198–205. doi:10.1016/j.bej.2007.07.001

    Article  CAS  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil 83:79–86. doi:10.1016/S0141-3910(03)00227-1

    Article  CAS  Google Scholar 

  • Kim SY, Oh DK, Lee KH, Kim JH (1997) Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Appl Microbiol Biotechnol 48:23–26. doi:10.1007/s002530051009

    Article  CAS  Google Scholar 

  • Kim NR, Lim JS, Hong SI, Kim SW (2005) Optimization of feed conditions in a 2.5-l fed-batch culture using rice oil to improve cephalosporin C production by Cephalosporium acremonium M25. World J Microbiol Biotechnol 21:787–789. doi:10.1007/s11274-004-3852-2

    Article  CAS  Google Scholar 

  • Knauseder F, Brandl E (1976) Pleuromutilins—fermentation, structure and biosynthesis. J Antibiot 29:125–131

    CAS  Google Scholar 

  • Lee GC, Tang SJ, Sun KH, Shaw JF (1999) Analysis of the gene family encoding lipases in Candida rugosa by competitive reverse transcription-PCR. Appl Environ Microbiol 65:3888–3895

    CAS  Google Scholar 

  • Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Ohta N, Park YS, Yahiro K, Okabe M (1995) Comparison of neomycin production from Streptomyces fradiae cultivation using soybean oil as the sole carbon source in an air-lift bioreactor and a stirred-tank reactor. J Ferment Bioeng 79:443–448. doi:10.1016/0922-338X(95)91259-8

    Article  CAS  Google Scholar 

  • Papa IA, Zulaybar TO, Raymundo AK (2006) Increasing pleuromutilin activity of Clitopilus passeckerianus by chemical mutagenesis and improvement of production medium. Philos Agr Sci 89:20–33

    Google Scholar 

  • Park YS, Momose I, Tsunoda K, Okabe M (1994) Enhancement of cephamycin-C production using sSoybean oil as the sole carbon source. Appl Environ Microbiol 40:773–779

    CAS  Google Scholar 

  • Peacock L, Ward J, Ratledge C, Dickinson FM, Ison A (2003) How Streptomyces lividans uses oils and sugars as mixed substrates. Enzyme Microb Technol 32:157–166. doi:10.1016/S0141-0229(02)00278-8

    Article  CAS  Google Scholar 

  • Phillips OA, Sharaf LH (2007) Pleuromutilin antibacterial agents: patent review 2001–2006. Expert Opin Ther Pat 17:429–435. doi:10.1517/13543776.17.4.429

    Article  CAS  Google Scholar 

  • Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24:1262–1287. doi:10.1039/b617765b

    Article  CAS  Google Scholar 

  • Silva CC, Dekker RFH, Silva R, da Silva M, Barbosa AM (2007) Effect of soybean oil and Tween 80 on the production of botryosphaeran by Botryosphaeria rhodina MAMB-05. Process Biochem 42:1254–1258. doi:10.1016/j.procbio.2007.05.009

    Article  CAS  Google Scholar 

  • Stewart KR (1986) A method for generating protoplasts from Clitopilus-Pinsitus. J Antibiot 39:1486–1487

    CAS  Google Scholar 

  • Tsukagoshi T, Tokiwano T, Oikawa H (2007) Studies on the later stage of the biosynthesis of pleuromutilin. Biosci Biotechnol Biochem 71:3116–3121. doi:10.1271/bbb.70547

    Article  CAS  Google Scholar 

  • Yang H, He G (2008) Influence of nutritional conditions on exopolysaccharide production by submerged cultivation of the medicinal fungus Shiraia bambusicola. World J Microbiol Biotechnol 24:2903–2907. doi:10.1007/s11274-008-9832-1

    Article  CAS  Google Scholar 

  • Yang F, Ke Y, Kuo S (2000) Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme Microb Technol 27:295–301. doi:10.1016/S0141-0229(00)00213-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-Tech Foundation of Southwest University (XSGX-0610) and Chongqing Key Program of Science and Technology Development (CSTC2009AB1029). We are also grateful to Dr. C. Deng (University of Wollongong, Australia) and Dr. X. Zou (Southwest University, People’s Republic of China) for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Zou, Y. & Zhao, W. Effect of soybean oil on the production of mycelial biomass and pleuromutilin in the shake-flask culture of Pleurotus mutilis . World J Microbiol Biotechnol 25, 1705–1711 (2009). https://doi.org/10.1007/s11274-009-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0064-9

Keywords

Navigation