Skip to main content

Advertisement

Log in

Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Major cell wall-bound phenolic compounds were detected and identified in roots of tomato at different stages of growth. Alkaline hydrolysis of the cell wall material of the root tissues yielded ferulic acid as the major bulk of the phenolic compounds. Other phenolic compounds identified were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. All the six phenolic acids were higher in very early stage of plant growth. Ferulic acid, 4-hydroxybenzoic acid and 4-coumaric acid exhibited a decreasing trend up to 60 days and then the content of these phenolic acids increased somewhat steadily towards the later stage of growth. Total phenolics, phenylalanine ammonia-lyase (PAL) activity and peroxidase (POD) activity were in tandem match with the occurrence pattern of the phenolic acids. Ferulic acid showed highest antifungal activity against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. The results of this study may be interpreted to seek an explanation for high susceptibility of tomato plants at flowering stage to Fusarium wilt. It may also be concluded that greater amounts of ferulic acid in combination with other phenolics and higher level of PAL and POD activities after 60 days of growth may have a role in imparting resistance against Fusarium wilt at a late stage of plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, New York

    Google Scholar 

  • Camm EL, Towers GHN (1973) Phenylalanine ammonia-lyase. Phytochemistry 12:961–973. doi:10.1016/0031-9422(73)85001-0

    Article  CAS  Google Scholar 

  • Chance B, Maehly M (1955) In: Colowick SP, Kaplan NP (eds) Methods in enzymology. Academic Press, New York, p 764

  • Cho JY, Moon JH, Seong KY, Park KH (1998) Antimicrobial activity of 4-hydroxybenzoic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62:2273–2276. doi:10.1271/bbb.62.2273

    Article  CAS  Google Scholar 

  • Creasy LL, Zucker M (1974) Phenylalanine ammonia-lyase and phenolic metabolism. Recent Adv Phytochem 8:1–19

    CAS  Google Scholar 

  • Dey G, Chakraborty M, Mitra A (2005) Profiling C6–C3 and C6–C1 phenolic metabolites in Cocos nucifera. J Plant Physiol 162:375–381. doi:10.1016/j.jplph.2004.08.006

    Article  CAS  Google Scholar 

  • Dey S, Ghose K, Gangopadhyay G, Basu D (2007) Assessment of genomic diversity of wild and cultivated tomato through resistance gene analogue polymorphism and I2 homologues. Euphytica 154:219–230. doi:10.1007/s10681-006-9290-5

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  Google Scholar 

  • Edwards K, Cramer CL, Bolwel GP, Dixon RA, Schuch W, Lamb CJ (1985) Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci USA 82:6731–6735. doi:10.1073/pnas.82.20.6731

    Article  CAS  Google Scholar 

  • El Modafar C, Tantaoui A, El Boustani E (2000) Changes in cell wall-bound phenolic compounds and lignin in roots of date palm cultivars differing in susceptibility to Fusarium oxysporum f. sp. albedinis. J Phytopathol 148:405–411. doi:10.1046/j.1439-0434.2000.00512.x

    Article  CAS  Google Scholar 

  • Friend J (1981) Plant phenolics, lignification and plant disease. Prog Phytochem 7:197–261

    CAS  Google Scholar 

  • Fritzemeier KH, Cretin C, Kombrink E, Rohwer F, Taylor J, Scheel D, Hahlbrock K (1987) Transient induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiol 85:34–41. doi:10.1104/pp.85.1.34

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186. doi:10.1146/annurev.pp.37.060186.001121

    Article  CAS  Google Scholar 

  • Fry SC (1987) Intercellular feruloylation of pectic polysaccharides. Planta 171:205–211. doi:10.1007/BF00391095

    Article  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319. doi:10.1016/S1369-5266(00)00087-X

    Article  CAS  Google Scholar 

  • Hino F, Okazaki M, Miura Y (1982) Effects of kinetin on formation of scopoletin and scopolin in tobacco tissue cultures. Agric Biol Chem 46:2195–2202

    CAS  Google Scholar 

  • Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear β-1, 3-glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037

    Article  CAS  Google Scholar 

  • Lewis NG, Yamamoto Y (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496. doi:10.1146/annurev.pp.41.060190.002323

    Article  CAS  Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209. doi:10.1016/j.pmpp.2008.02.003

    Article  CAS  Google Scholar 

  • Mandal S, Mitra A (2008) Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.). Biotechnol Lett 30:1253–1258. doi:10.1007/s10529-008-9666-9

    Article  CAS  Google Scholar 

  • Matern U, Strasser H, Wendorff H, Hamerski D (1988) Coumarins and furanocoumarins. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, New York, pp 3–21

    Google Scholar 

  • McKeehen JD, Busch RH, Fulcher RG (1999) Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Agric Food Chem 47:1476–1482. doi:10.1021/jf980896f

    Article  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389. doi:10.1146/annurev.py.30.090192.002101

    Article  CAS  Google Scholar 

  • Novak FJ (1992) Musa (bananas and plantains). In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. Commonw Agric Bur Int, Walingford, Oxon, UK, pp 449–488

    Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266. doi:10.1111/j.0105-2896.2004.0119.x

    Article  Google Scholar 

  • Orr JD, Edwards K, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.) (XIV. Changes in the levels of phenylpropanoid pathway intermediates in relation to regulation of l-phenylalanine ammonia-lyase in elicitor-treated cell-suspension cultures). Plant Physiol 101:847–856

    CAS  Google Scholar 

  • Parr AJ, Waldron KW, Ng A, Parker ML (1996) The wall-bound phenolics of Chinese water chestnut (Eleocharis dulcis). J Sci Food Agric 71:501–507. doi:10.1002/(SICI)1097-0010(199608)71:4<501::AID-JSFA608>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Parr AJ, Ng A, Waldron KW (1997) Ester-linked phenolic components of carrot cell walls. J Agric Food Chem 45:2468–2471. doi:10.1021/jf960982k

    Article  CAS  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106:53–60

    CAS  Google Scholar 

  • Robb J, Lee SW, Mohan R, Kolattukudy PE (1991) Chemical characterization of stress induced vascular coating in tomato. Plant Physiol 97:528–536. doi:10.1104/pp.97.2.528

    Article  CAS  Google Scholar 

  • Spletzer ME, Enyedi AJ (1999) Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato. Phytopathology 89:722–727. doi:10.1094/PHYTO.1999.89.9.722

    Article  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288. doi:10.1146/annurev.py.18.090180.001355

    Article  CAS  Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic metabolites. Blackwell Scientific Publications, Oxford, pp 143–167

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Mandal acknowledges the Indian Council of Agricultural Research (ICAR) for the receipt of three-year study leave to pursue the Ph.D. program at IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhamoy Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S., Mitra, A. & Mallick, N. Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt. World J Microbiol Biotechnol 25, 795–802 (2009). https://doi.org/10.1007/s11274-008-9951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9951-8

Keywords

Navigation