Skip to main content

Advertisement

Log in

Potentially Toxic Elements in Water, Soil, and Plants from an Agroecosystem with Hydrothermal Mud Pools

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mud pools are chemically similar to volcanism and are considered a pollution risk to ecosystems. The mud pools of Los Negritos, Michoacán, Mexico, additionally present untreated semi-urban wastewater discharges, livestock, and agricultural activities. This study aimed to identify sources, interaction, accumulation, spatial distribution, and mobilization of potentially toxic elements in water, soil, and plants of this site. The water is mainly alkaline (pH 7–8.45) with positive Eh values and T in the 17 to 63 °C range. The hydrothermal mud pools are the primary source of As found in water (1506 mg L−1), soil (153 mg kg−1), Agrostis sp. (108 mg kg−1), and Zea mays (115 mg kg−1). The potentially toxic elements seem immobilized in soil; even so, they are susceptible to being released when environmental conditions change, which represents a possible threat to the health of consumers by ingestion and bioaccumulation of As from water and corn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data associated with the manuscript will be made available upon reasonable request.

References

  • Abrahams, P. W., & Thornton, I. (1994). The contamination of agricultural land in the metalliferous province of southwest England: Implications to livestock. Agriculture, Ecosystems and Environment, 48(2), 125–137. https://doi.org/10.1016/0167-8809(94)90083-3

    Article  CAS  Google Scholar 

  • Adamo, P., Agrelli, D., & Zampella, M. (2018). Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In V. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental Geochemistry (2nd ed., pp. 153–194). Elsevier. https://doi.org/10.1016/B978-0-444-63763-5.00010-0

    Chapter  Google Scholar 

  • Aher, K. R. (2012). Geochemistry and assessment of groundwater quality for drinking and irrigation purposes: A case study of Sukhana River Sub basin, District Aurangabad, Maharashtra, India Introduction. International Journal of Recent Trends in Science and Technology, 4(1), 45–49. statperson.

    Google Scholar 

  • Akter, K. F., Owens, G., Davey, D. E., & Naidu, R. (2006). Arsenic speciation and toxicity in biological systems. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 184, pp. 97–149). Springer. https://doi.org/10.1007/0-387-27565-7_3

    Chapter  Google Scholar 

  • Al-Homaidan, A. A., Al-Otaibi, T., El-Sheikh, M. A., et al. (2020). Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Environ Monit Assess, 192, 202. https://doi.org/10.1007/s10661-020-8177-6

    Article  CAS  Google Scholar 

  • Ávalos, F. G., Soriano, A. O., Jaramillo, M. E., Nava, I. M., Reyes, J. M., Ruiz, E. M., et al. (2014). Geochemical Prospection of the Chapala Ciénega at Michoacán State. International Journal of Geosciences, 05(09), 1007–1011. https://doi.org/10.4236/ijg.2014.59086

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders - Strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baldantoni, D., Saviello, G., & Alfani, A. (2019). Nutrients and non-essential elements in edible crops following long-term mineral and compost fertilization of a Mediterranean agricultural soil. Environmental Science and Pollution Research, 26(35), 35353–35364. https://doi.org/10.1007/s11356-018-3353-8

    Article  CAS  Google Scholar 

  • Barakat, A., Ennaji, W., Krimissa, S., & Bouzaid, M. (2019). Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). International Journal of Environmental Health Research, 00(00), 1–16. https://doi.org/10.1080/09603123.2019.1595540

    Article  CAS  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to Evaluate the soil contamination. Journal of Geology and Geophysics, 5(1), 1–4. https://doi.org/10.4172/2381-8719.1000237

    Article  Google Scholar 

  • Bessonova, E. P., Bortnikova, S. B., Gora, M. P., Manstein, Y. A., Shevko, A. Y., Panin, G. L., & Manstein, A. K. (2012). Geochemical and geo-electrical study of mud pools at the Mutnovsky volcano (South Kamchatka, Russia): Behavior of elements, structures of feeding channels and a model of origin. Applied Geochemistry, 27(9), 1829–1843. https://doi.org/10.1016/j.apgeochem.2012.02.018

    Article  CAS  Google Scholar 

  • Bigurra-Pimentel, E., & Casarrubias-Unzueta, Z. (1995). Antecedentes para la localización del pozo exploratorio EN-1 en Los Negritos, Michoacán. México. Geotermia, 11(2), 87–101.

    Google Scholar 

  • Dimitrov, L. I. (2002). Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1–4), 49–76. https://doi.org/10.1016/S0012-8252(02)00069-7

    Article  CAS  Google Scholar 

  • Çeliker, M., Türkmen, S., Güler, C., & Kurt, M. A. (2019). Factors controlling arsenic and selected potentially toxic elements in stream sediment–soil and groundwater–surface water systems of a hydrologically modified semi-closed basin (Uluova) in Elazığ Province, Eastern Turkey. Journal of Hydrology, 569, 167–187. https://doi.org/10.1016/j.jhydrol.2018.11.067

    Article  CAS  Google Scholar 

  • Chen, G., Feng, T., Li, Z., Chen, Z., Chen, Y., Wang, H., & Xiang, Y. (2017). Influence of sulfur on the arsenic phytoremediation using Vallisneria natans (Lour.) Hara. Bulletin of Environmental Contamination and Toxicology, 99(3), 411–414. https://doi.org/10.1007/s00128-017-2135-1

    Article  CAS  Google Scholar 

  • Criaud, A., & Fouillac, C. (1989). The distribution of arsenic (III) and arsenic (V) in geothermal waters: Examples from the Massif Central of France, the Island of Dominica in the Leeward Islands of the Caribbean, the Valles Caldera of New Mexico, U.S.A., and southwest Bulgaria. Chemical Geology, 76(3–4), 259–269. https://doi.org/10.1016/0009-2541(89)90095-8

    Article  CAS  Google Scholar 

  • Díaz, C. E. (1969). Litología y gráfica de temperatura de los barrenos perforados en Los Negritos, Michoacán. Technical Report. Michoacán: Federal Comission of Electricity.

    Google Scholar 

  • Ellis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica Et Cosmochimica Acta, 28(8), 1323–1357. https://doi.org/10.1016/0016-7037(64)90132-2

    Article  CAS  Google Scholar 

  • Ellis, D. S., Cipro, C. V. Z., Ogletree, C. A., Smith, K. E., & Aronson, R. B. (2018). A 50-year retrospective of persistent organic pollutants in the fat and eggs of penguins of the Southern Ocean. Environmental Pollution, 241, 155–163. https://doi.org/10.1016/j.envpol.2018.05.003

    Article  CAS  Google Scholar 

  • Ershov, V. V., Nikitenko, O. A., Perstneva, Y. A., Bondarenko, D. D., & Ustyugov, G. V. (2019). On the problem of geochemical signatures of mud volcanoes and sediment-hosted hydrothermal systems. IOP Conference Series: Earth and Environmental Science, 324, 1. https://doi.org/10.1088/1755-1315/324/1/012020

    Article  Google Scholar 

  • Farhadian Babadi, M., Mehrabi, B., Tassi, F., Cabassi, J., Vaselli, O., Shakeri, A., et al. (2019). Origin of fluids discharged from mud volcanoes in SE Iran. Marine and Petroleum Geology, 106, 190–205. https://doi.org/10.1016/j.marpetgeo.2019.05.005

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, A. (1979). In C. Brenn & K. McNeily (Eds.), Groundwater (p. 370). Englewood, New Jersey: Prentice-Hall In.

    Google Scholar 

  • Gavrilescu, M. (2021). Water, soil, and plants interactions in a threatened environment. Water (Switzerland), 13, 19. https://doi.org/10.3390/w13192746

    Article  CAS  Google Scholar 

  • Givelet, N., Ross-Barraclough, F., Goodsite, M. E., & Shotyk, W. (2003). A 6,000-years record of atmospheric mercury accumulation in the high Arctic from peat deposits on Bathurst Island, Nunavut, Canada. Journal De Physique Archives, 107, 545–548.

    CAS  Google Scholar 

  • Gómez-Valle, R., Friedman, J. D., Gawarecki, S. J., & Banwell, C. J. (1970). Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico. Geothermics, 2, 381–398. https://doi.org/10.1016/0375-6505(70)90036-2

    Article  Google Scholar 

  • Hansen, A. M., & Van Afferden, M. (2001). The Lerma-Chapala. Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Hakeem, K. R., Öztürk, M., & Fujita, M. (2015). Arsenic toxicity in plants and possible remediation. Soil Remediation and Plants: Prospects and Challenges. Chapter 16 (pp. 433–501). Elsevier. https://doi.org/10.1016/B978-0-12-799937-1.00016-4

    Chapter  Google Scholar 

  • HC (Health Canada). (2019). Guidelines for Canadian Drinking Water Quality Summary Table Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment March 2006. Environments, (October 2014), 1–16.

  • Hiriart Le Bert, G. (2011). Evaluación de la Energía geotérmica en México (p. 167). Mexico City: Informe para el Banco Interaméricano de Desarrollo y la Comisión Reguladora de Energía.

    Google Scholar 

  • Hwang, J. I., Zimmerman, A. R., & Kim, J. E. (2018). Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. Science of the Total Environment, 627, 514–522. https://doi.org/10.1016/j.scitotenv.2018.01.208

    Article  CAS  Google Scholar 

  • INEGI (National Institute of Statistics and Geography). (1982a). Conjunto de datos geológicos vectoriales. (Instituto Nacional de Estadística y Geografía) E1303. Michoacán.

  • INEGI (National Institute of Statistics and Geography). (1982b). Conjunto de datos geológicos vectoriales. (Instituto Nacional de Estadística y Geografía) F1312. Michoacán.

  • Istadi, B. P., Wibowo, H. T., Sunardi, E., Hadi, S., Sawolo, N., & Dar, I. A. (2012). Mud volcano and its evolution. In Dar I. Ahmad (Ed.), Earth Sciences, Chapter 17 (pp. 375–434). IntechOpen.

    Google Scholar 

  • Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements- An environmental issue. Geoderma, 122(2–4), 143–149.

    Article  CAS  Google Scholar 

  • Koinig, K., Shotyk, W., Lotter, A., & Ohlendorf, C. (2003). 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake - The role of climate, vegetation and land-use history. Journal of Paleolimnology, 30, 307–320. http://www.springerlink.com/index/G548V1W32W731523.pdf%5Cnfile:///Users/whobbs/Documents/PDFs/Papers2/Koinig/2003/J Paleolimnol 2003 Koinig.pdf%5Cnpapers2://publication/uuid/0A0CA68B-51CB-426B-AEC4–16055B490C9D

  • Komarnisky, L. A., Christopherson, R. J., & Basu, T. K. (2003). Sulfur: Its clinical and toxicologic aspects. Nutrition, 19(1), 54–61. https://doi.org/10.1016/S0899-9007(02)00833-X

    Article  CAS  Google Scholar 

  • Kopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093

    Article  Google Scholar 

  • Llamas, M. I., Jiménez-Gavilán, P., Luque-Espinar, J. A., Benavente-Herrera, J., Candela, L., Sanmiguel-Martí, M., et al. (2022). Hydrogeological, hydrodynamic and anthropogenic factors affecting the spread of pharmaceuticals and pesticides in water resources of the Granada plain (Spain). Journal of Hydrology, 610, 127791. https://doi.org/10.1016/j.jhydrol.2022.127791

    Article  CAS  Google Scholar 

  • López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., et al. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429, 57–75. https://doi.org/10.1016/j.scitotenv.2011.08.043

    Article  CAS  Google Scholar 

  • Majumdar, S., Peralta-Videa, J. R., Castillo-Michel, H., Hong, J., Rico, C. M., & Gardea-Torresdey, J. L. (2012). Applications of synchrotron m-XRF to study the distribution of biologically important elements in different environmental matrices A review. Analytica Chimica Acta, 755(28), 1–16. https://doi.org/10.1016/j.aca.2012.09.050

    Article  CAS  Google Scholar 

  • Malla, R., Tanaka, Y., Mori, K., & Totawat, K. L. (2007). Effect of short-term sewage irrigation on chemical build up in soils and vegetables. The Agricultural Engineering International: the CIGR Ejournal, Volume IX, Manuscript LW 07 006.

  • Mateus, A., Carvalho, M. R., Nunes, J. C., & Carvalho, J. M. (2015). Influence of wall-rock alteration and fluid mixing mechanisms in the chemistry of thermal fluids and mud-pool sediments at Caldeiras da Ribeira Grande (S. Miguel Island, Azores). Environmental Earth Sciences, 73(6), 2809–2831. https://doi.org/10.1007/s12665-014-3439-7

    Article  CAS  Google Scholar 

  • Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S., & Kamyab, H. (2019). Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicology Reports, 6, 472–481. https://doi.org/10.1016/j.toxrep.2019.05.012

    Article  CAS  Google Scholar 

  • Mazzini, A., & Etiope, G. (2017). Mud volcanism: An updated review. Earth-Science Reviews, 168, 81–112. https://doi.org/10.1016/j.earscirev.2017.03.001

    Article  CAS  Google Scholar 

  • Mdeni, N. L., Adeniji, A. O., Okoh, A. I., & Okoh, O. O. (2022). Analytical evaluation of carbamate and organophosphate pesticides in human and environmental matrices: A review. Molecules, 27(3), 1–21. https://doi.org/10.3390/molecules27030618

    Article  CAS  Google Scholar 

  • Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15(10), 1–30. https://doi.org/10.3390/ijerph15102278

    Article  CAS  Google Scholar 

  • Mousavi, S. R., Balali-Mood, M., Riahi-Zanjani, B., Yousefzadeh, H., & Sadeghi, M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminum in irrigation water wells and wastewaters used for agriculture in Mashad, Northwestern Iran. Family and Environment Research, 51(4), 403–412. http://kiss.kstudy.com.proxy.knue.ac.kr/thesis/thesis-view.asp?g=kissmeta&m=exp&enc=476A220CF87C77045F8F3E74CEE13A46

  • Na, G. N., & Salt, D. E. (2011). The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environmental and Experimental Botany, 72(1), 18–25. https://doi.org/10.1016/j.envexpbot.2010.04.004

    Article  CAS  Google Scholar 

  • Nematollahi, M. J., Keshavarzi, B., Zaremoaiedi, F., Rajabzadeh, M. A., & Moore, F. (2020). Ecological-health risk assessment and bioavailability of potentially toxic elements (PTEs) in soil and plant around a copper smelter. Environmental Monitoring and Assessment, 192, 10. https://doi.org/10.1007/s10661-020-08589-4

    Article  CAS  Google Scholar 

  • Nordberg, G. (1993). Metals: Chemical properties and toxicity, Aluminum. In J. M. Stellman (Ed.), Encyclopedia of occupational health and safety (4th ed., Part IX, 63). Geneva, Switzerland: International Labour Office. https://www.iloencyclopaedia.org/part-ix-21851/metals-chemical-properties-and-toxicity

  • Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/j.envint.2019.105046

    Article  CAS  Google Scholar 

  • Palma, P. O. (1985). Preliminary report of the gravimetric and magnetometric study of the geothermal area of Los Negritos, Mich. Michoacán, México: Internal report from the Federal Comission of Electricity.

    Google Scholar 

  • Pezzetta, E., Lutman, A., Martinuzzi, I., Viola, C., Bernardis, G., & Fuccaro, V. (2011). Iron concentrations in selected groundwater samples from the lower Friulian Plain, northeast Italy: Importance of salinity. Environmental Earth Sciences, 62(2), 377–391. https://doi.org/10.1007/s12665-010-0533-3

    Article  CAS  Google Scholar 

  • Ramesh, K. (2007). Hydrochemical studies and effect of irrigation on groundwater quality in Todiar basin. Anna University, Chennai, India.

    Google Scholar 

  • Ramos-Leal, J. A., Morán-Ramírez, J., Silva-García, J. T., et al. (2018). Identification of hydrogeochemical processes in a volcano-sedimentary aquifer of Ciénega de Chapala in Michoacán. Mexico. Arab J Geosci, 11, 422. https://doi.org/10.1007/s12517-018-3760-7

    Article  CAS  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2009). Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, 24(7), 1147–1167. https://doi.org/10.1016/j.apgeochem.2009.03.013

    Article  CAS  Google Scholar 

  • Rosas, J., & Urrutia, J. (1992). Magneto estratigrafía volcánica de la zona geotérmica Ixtlán de los Hervores-Los Negritos. Michoacán. Geofísica Internacional: México, 31(4), 431–442.

    Article  Google Scholar 

  • Rosas-Castor, J. M., Guzmán-Mar, J. L., Hernández-Ramírez, A., Garza-González, M. T., & Hinojosa-Reyes, L. (2014). Arsenic accumulation in maize crop (Zea mays): A review. Science of the Total Environment, 488–489(1), 176–187. https://doi.org/10.1016/j.scitotenv.2014.04.075

    Article  CAS  Google Scholar 

  • Salas, J. J. (2009). Estudio Geofísico en el Sector Centro-Occidental del Cinturón Volcánico Transmexicano: Graben de Chapala. Bachelor Thesis. Instituto Politécnico Nacional, Escuela Superior de Ingeniería y Arquitectura Ciencias de la Tierra, México DF.

  • Sandoval-Moreno, A. (2011). Entre el manejo comunitario y gubernamental del agua en la Ciénega de Chapala, Michoacán, México. Agricultura, Sociedad y Desarrollo, 8(3), 367–385. http://www.scielo.org.mx/pdf/asd/v8n3/v8n3a4.pdf

  • Sandoval, A., & Paleta, G. (2015). La conformación de una región productiva contenciosa: el Distrito de Riego 024 Ciénega de Chapala, Michoacán, México. Desacatos, 47, 132–149.

    Google Scholar 

  • SEDUE (Secretaría de Desarrollo Urbano y Ecología). (1989). Acuerdo por el que se establecen los criterios ecológicos de calidad del agua. , Pub. L. No. 430(9). México: Diario Oficial de la Federación.

  • Sierra, J., Roig, N., Giménez-Papiol, G., Pérez-Gallegos, E., & Schumacher, M. (2017). Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Science of the Total Environment, 605–606, 211–218.

    Article  Google Scholar 

  • Shotyk, W. (2020). Natural and anthropogenic sources of copper to organic soils: A global, geochemical perspective. Canadian Journal of Soil Science, 100(4), 516–536.

    Article  Google Scholar 

  • Silveira, M. L. A., Alleoni, L. R. F., & Guilherme, L. R. G. (2003). Biosolids and heavy metals in soils. Scientia Agricola, 60(4), 793–806. https://doi.org/10.1590/s0103-90162003000400029

    Article  CAS  Google Scholar 

  • Takeno, N. (2005). Atlas of Eh/pH diagrams. Intercomparison of thermodynamic databases. Nuclear regulatory Comission. https://www.nrc.gov/docs/ML1808/ML18089A638.pdf

  • Tan, K. G., Bartels, K., & Bedard, P. L. (1987). Lead chloride solubility and density data in binary aqueous solutions. Hydrometallurgy, 17(3), 335–356.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Torres-Bugarín, O., Zavala-Aguirre, J. L., Gómez-Rubio, P., Buelna-Osben, H. R., Zúñiga-González, G., & Gómez, M.G.-U. (2007). Potential fish species as genotoxicity biomarkers at lake “La Alberca”, Michoacan, Mexico | Especies de peces con potencial como bioindicadoras de genotoxicidad en el lago “La Alberca”, Michoacán. México. Hidrobiologica, 17(1), 75–81.

    Google Scholar 

  • U.S. Government, O. P. (1975). Development and use of geothermal resources. Second United Nations Symposium (p. 986). San Francisco, California

  • Van Hullebusch, E. D., Lens, P. N. L., & Tabak, H. H. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Reviews in Environmental Science and Biotechnology, 4(3), 185–212. https://doi.org/10.1007/s11157-005-2948-y

    Article  CAS  Google Scholar 

  • Webster-Brown, J. G. (2000). Chemical contaminants and their effects. In In Environmental Safety and Health Issues in Geothermal Development. World Geothermal Congress.

    Google Scholar 

  • Webster, J. G., & Nordstrom, D. K. (2003). Geothermal arsenic. The source, transport and fate of arsenic in geothermal systems. In J. G. Webster & D. K. Nordstrom (Eds.), Arsenic in Ground Water, Chapter 4 (pp. 101–125). Kluver Academy. https://doi.org/10.1007/b101867

    Chapter  Google Scholar 

  • WHO (World Health Organization) (2018a). Guidelines for drinking-water quality. United Nations

    Google Scholar 

  • WHO (World Health Organization). (2018b). Developing drinking water regulations and standards. General guidance with a special focus on countries with limited resources. Routledge Handbook of Water and Health. . https://doi.org/10.4324/9781315693606

    Chapter  Google Scholar 

  • Wong, Y. J., Shimizu, Y., He, K., & Nik Sulaiman, N. M. (2020). Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin. Malaysia. Environmental Monitoring and Assessment, 192, 10. https://doi.org/10.1007/s10661-020-08543-4

    Article  Google Scholar 

  • Xue, F., Tang, B., Bin, L., Ye, J., Huang, S., Fu, F., et al. (2019). Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta. Science of the Total Environment, 657, 696–703. https://doi.org/10.1016/j.scitotenv.2018.12.008

    Article  CAS  Google Scholar 

  • Zaccone, C., Di Caterina, R., Rotunno, T., & Quinto, M. (2010). Soil - farming system - food - health: Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples. Soil and Tillage Research, 107(2), 97–105. https://doi.org/10.1016/j.still.2010.02.004

    Article  Google Scholar 

  • Zárate-del Valle, P. F., Mendizábal, E., & Ríos, N. (2009). Evaluación biológica y geoquímica de la interfaz sedimento-agua del Lago de Chapala. Guadalajara, Jalisco.

  • Zogorski, J. S., Carter, J. M., Ivahnenko, T., Lapham, W. W., Moran, M. J., Rowe, B. L., et al. (2006). Volatile Organic Compounds in the Nation’s Ground Water and Drinking-Water Supply Wells. Proceedings of the Water Environment Federation, US Geological Survey Circular  vol. 1292, p. 101). https://doi.org/10.2175/193864707787960297

    Chapter  Google Scholar 

  • Zoller, W. H., & Duce, R. A. (1976). Atmospheric concentrations and sources of trace metals at the South Pole. Report on Polar Meteorology Workshop, Reno, Nevada, 1975(183), 110–113. https://doi.org/10.1126/science.183.4121.198

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Federal Commission of Electricity, Management of Geothermal Studies, for suggesting this geothermal exploration zone before any pre-feasibility studies.

Funding

The authors would like to thank the Secretaría de Energía—Consejo Nacional de Ciencia y Tecnología Fund 207032 (years 2014–2018), “Fondo de Sustentabilidad Energética,” for providing financial support to P25 of CeMIE-Geo (Mexican Center of Innovation in Geothermal Energy).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research presented in this manuscript. ER-V performed the sampling, sample preparation, and analysis. Material preparation, data analysis, and manuscript writing were performed by ZIG-A and MAG-Z. All authors read and approved the final manuscript.

Corresponding author

Correspondence to González-Acevedo Zayre I..

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

González-Acevedo Zayre I., García-Zarate Marco A., and Rosas-Verdugo Eliana give their consent for the publication of the article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 6233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

I., GA.Z., A., GZ.M. & Eliana, RV. Potentially Toxic Elements in Water, Soil, and Plants from an Agroecosystem with Hydrothermal Mud Pools. Water Air Soil Pollut 235, 23 (2024). https://doi.org/10.1007/s11270-023-06791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06791-x

Keywords

Navigation