Skip to main content

Advertisement

Log in

Structural, Biochemical, and Physiological Adjustments for Toxicity Management, Accumulation, and Remediation of Cadmium in Wetland Ecosystems by Typha domingensis Pers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Five populations of Typha domingensis Pers. were evaluated for their tolerance to different regimes of cadmium (Cd). Plants were collected from different sites in Punjab province of Pakistan viz. Jaranwala (S1), Farooq Abad (S2), Chiniot (S3), Khurianwala (S4), and Sidhnai (S5). Collected plants were established for three months and then subjected to Cd levels, i.e., 0, 50, 100, and 150 µM L−1. Differential changes in attributes presented variation in tolerance level of T. domingensis populations against Cd toxicity. Fresh and dry biomass, photosynthetic pigments, and total soluble sugars were decreased in all populations under Cd stress, but reduction in biomass of S2 plants was least. Similarly, amino acids, protein contents, and antioxidant enzymatic activity were increased in S2 and S3 under Cd. The populations, i.e., S2, S3, with better anti-oxidative metabolism, ionic partitioning, and growth presented useful structural changes in root and leaves. Contrary to increased leaf thickness, area of leaf and root conducting vessels was decreased with increasing Cd concentrations but these changes were lowest in S2 plants as compared to other populations. Our data indicate that the higher tolerance to Cd toxicity observed in S2 population of T. domingensis could be related to the collective role played by physiological, biochemical and anatomical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ANOVA:

Analysis of variance

AsA:

Ascorbic acid

CAR:

Cartenoid

CAT:

Catalase

Chl_a:

Chlorophyll-a

Chl_b:

Chlorophyll-b

CRD:

Completely randomized design

EDTA:

Ethylene diamine tetra acetic acid

FW:

Fresh weight

GB:

Glycinebetaine

HMs:

Heavy metal

LACA:

Leaf arenchyma cell area

LCCA:

Leaf cortical cell area

LCd:

Leaf cadmium

LCl:

Leaf chloride

LK:

Leaf Potassium

LMVCA:

Leaf Metaxylem vessel cell area

Lna:

Leaf Sodium

LP:

Leaf Phosphorus

LStT:

Leaf schlrenchyma thickness

LT:

Leaf thickness

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

OD:

Optimal density

POD:

Peroxidase

PS II:

Photosystem-II

RA:

Root area

RAA:

Root aerenchyma area

RCCA:

Root cortical cell area

RCd:

Root cadmium

RENCA:

Root endodermal cell area

REPCA:

Root epidermal cell area

REPT:

Root epidermal thickness

RMVCA:

Root Metaxylem cell area

ROS:

Reactive oxygen species

RPHA:

Root phloem area

RVBCA:

Root vascular bundle cell area

S1 :

Jaranwalal

S2 :

Farooqabad

S3 :

Chiniot

S4 :

Khurianwala

S5 :

Sidhnai

SFWT:

Shoot fresh weight

SOD:

Speroxide dismutase

SRM:

Standard reference materials

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Abd El-Samad, H., Shaddad, M., & Barakat, N. (2011). Improvement of plants salt tolerance by exogenous application of amino acids. Journal of Medicinal Plants Research, 5(24), 5692–5699.

    CAS  Google Scholar 

  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4), 555–560.

    Article  CAS  Google Scholar 

  • Akhter, N., Aqeel, M., Hameed, M., Alhaithloul, H. A. S., Alghanem, S. M., Shahnaz, M. M., Hashem, M., Alamri, S., Khalid, N., & Al-Zoubi, O. M. (2021). Foliar architecture and physio-biochemical plasticity determines survival of Typha domingensis pers Ecotypes in nickel and salt affected soil. Environmental Pollution, 286, 117316.

    Article  CAS  Google Scholar 

  • Akhter, N., Aqeel, M., Shahnaz, M. M., Alnusairi, G. S., Alghanem, S. M., Kousar, A., Hashem, M., Kanwal, H., Alamri, S., & Ilyas, A. (2021). Physiological homeostasis for ecological success of Typha (Typha domingensis Pers) populations in saline soils. Physiology and Molecular Biology of Plants, 27(4), 687–701.

    Article  CAS  Google Scholar 

  • Alici, E. H. & Arabaci, G. (2016). Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology, 1–7.

  • Almuktar, S. A., Abed, S. N., & Scholz, M. (2018). Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25(24), 23595–23623.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—a review. Earth-Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Aqeel, M., Khalid, N., Tufail, A., Ahmad, R. Z., Akhter, M. S., Luqman, M., Javed, M. T., Irshad, M. K., Alamri, S., Hashem, M. & Noman, A. (2021). Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties. Environmental Science and Pollution Research, 1–15.

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24(1), 1–15.

    Article  CAS  Google Scholar 

  • Asgher, M., Khan, M. I. R., Anjum, N. A., & Khan, N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma, 252(2), 399–413.

    Article  CAS  Google Scholar 

  • Atienzar, F. A., Cordi, B., Donkin, M. E., Evenden, A. J., Jha, A. N., & Depledge, M. H. (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae. Palmaria Palmata. Aquatic Toxicology, 50(1–2), 1–12.

    CAS  Google Scholar 

  • Baas, P., Werker, E., & Fahn, A. (1983). Some ecological trends in vessel characters. Iawa Journal, 4(2–3), 141–159.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195(1), 133–140.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Chance, B. & Maehly, A. (1955). [136] Assay of catalases and peroxidases.

  • Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241–248.

    Article  CAS  Google Scholar 

  • Das, G. C., Kumar, K. B., & Mohanty, B. (2013). Effect of mercury and cadmium on the biochemical parameters of hydrilla plant. International Journal of Life Science and Pharma Research, 7, 58–67.

    Google Scholar 

  • Dawood, M., Taie, H., Nassar, R., Abdelhamid, M., & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54–63.

    Article  CAS  Google Scholar 

  • Doğan, M. (2011). Antioxidative and proline potentials as a protective mechanism in soybean plants under salinity stress. African Journal of Biotechnology, 10(32), 5972–5978.

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in Higher Plants. Plant Physiology, 59(2), 309–314.

    CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  Google Scholar 

  • Gomes, M. P., Marques, T. C. L. L. D. S., Nogueira, M. D. O. G., Castro, E. M. D., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola, 68, 566–573.

    Article  CAS  Google Scholar 

  • Gupta, B. & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014.

  • Hajiboland, R., Bahrami Rad, S., Barceló, J., & Poschenrieder, C. (2013). Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). Journal of Plant Nutrition and Soil Science, 176(4), 616–625.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Gill, S. S., Alharby, H. F., Razafindrabe, B. H., & Fujita, M. (2017). Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L: an intrinsic study on antioxidant defense and glyoxalase systems. Frontiers in Plant Science, 8, 115.

    Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60(1), 33–41.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189–198.

    Article  CAS  Google Scholar 

  • Hoagland, D. R. & Arnon, D. I. (1950). 'The water-culture method for growing plants without soil', Circular. California agricultural experiment station, Berkeley, CA, College of Agriculture, University of California.

  • Jaleel, C. A., Sankar, B., Sridharan, R., & Panneerselvam, R. (2008). Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turkish Journal of Biology, 32(2), 79–83.

    Google Scholar 

  • John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil and Environment, 54(6), 262.

    Article  CAS  Google Scholar 

  • Khalid, N., Aqeel, M., Noman, A., Khan, S. M., & Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290, 118104.

    Article  CAS  Google Scholar 

  • Khalid, N., Noman, A., Aqeel, M., Masood, A., & Tufail, A. (2019). Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. International Journal of Environmental Science and Technology, 16(4), 2091–2100.

    Article  CAS  Google Scholar 

  • Kim, H.-Y. (2014). Analysis of variance (ANOVA) comparing means of more than two groups. Restorative Dentistry & Endodontics, 39(1), 74.

    Article  Google Scholar 

  • Li, R.-H., Guo, P.-G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5(10), 751–757.

    Article  CAS  Google Scholar 

  • Lukačová, Z., Švubová, R., Kohanová, J., & Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70(1), 89–103.

    Article  CAS  Google Scholar 

  • Lux, A., Šottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120(4), 537–545.

    Article  CAS  Google Scholar 

  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580–585.

    CAS  Google Scholar 

  • Maine, M. A., Sune, N., Hadad, H., Sánchez, G., & Bonetto, C. (2009). Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. Journal of Environmental Management, 90(1), 355–363.

    Article  CAS  Google Scholar 

  • Marques, T., Moreira, F., & Siqueira, J. (2000). Growth and uptake of metals in tree seedlings in soil contaminated with heavy metals. Pesquisa Agropecuária Brasileira, 35, 121–132.

    Article  Google Scholar 

  • Melo, H. C. D., Castro, E. M. D., Soares, Â. M., Melo, L. A. D., & Alves, J. D. (2007). Anatomical and physiological alterations in Setaria anceps Stapf ex Massey and Paspalum paniculatum L under water deficit conditions. Hoehnea, 34(2), 145–153.

    Article  Google Scholar 

  • Minkina, T., Fedorenko, G., Nevidomskaya, D., Konstantinova, E., Polshina, T., Fedorenko, A., Chaplygin, V., Mandzhieva, S., Dudnikova, T., & Hassan, T. (2021). The Morphological and Functional Organization of Cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn under Soil Pollution by Potentially Toxic Elements. Water, 13(2), 227.

    Article  CAS  Google Scholar 

  • Mojiri, A. (2012). Phytoremediation of heavy metals from municipal wastewater by Typhadomingensis. African Journal of Microbiology Research, 6(3), 643–647.

    CAS  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Photometric nin-hydrin method for use in the ehromatography of amino acids. Journal of Biological Chemistry, 176, 367–388.

    Article  CAS  Google Scholar 

  • Mukherjee, S., & Choudhuri, M. (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58(2), 166–170.

    Article  CAS  Google Scholar 

  • Noman, A., & Aqeel, M. (2017). miRNA-based heavy metal homeostasis and plant growth. Environmental Science and Pollution Research, 24(11), 10068–10082.

    Article  CAS  Google Scholar 

  • Noman, A., Aqeel, M., Javed, M., Zafar, S., Ali, Q., Islam, W., Irshad, M., Buriro, M., Kanwal, H., & Khalid, N. (2017). Histological changes in Hibiscus rosa-sinensis endorse acclimation and phytoremediation of industrially polluted sites. J Anim Plant Sci, 27(5), 1637–1648.

    Google Scholar 

  • OriginLab Corporation. (2021). 'Origin v2021: scientific data analysis and graphing software', https://www.originlab.com. Retrieved 31 December, 2021, Northampton, MA 01060, United States.

  • Pirzadah, T. B., Malik, B., Tahir, I., Rehman, R. U., Hakeem, K. R., & Alharby, H. F. (2019). Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiology and Biochemistry, 144, 178–186.

    Article  CAS  Google Scholar 

  • Pourrut, B., Shahid, M., Douay, F., Dumat, C. & Pinelli, E. (2013). Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. Heavy metal stress in plants, 121–147.

  • Qasim, M., Lin, Y., Dash, C. K., Bamisile, B. S., Ravindran, K., Islam, S. U., Ali, H., Wang, F., & Wang, L. (2018). Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria. Microbial Pathogenesis, 119, 109–118.

    Article  Google Scholar 

  • Qasim, M., Xiao, H., He, K., Omar, M. A., Hussain, D., Noman, A., Rizwan, M., Khan, K. A., Al-Zoubi, O. M., & Alharbi, S. A. (2021). Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248, 109112.

    CAS  Google Scholar 

  • R Development Core Team. (2020). 'R: A language and environment for statistical computing', http://www.R-project.org. Retrieved 05 January, 2022, R Foundation for Statistical Computing, Vienna, Austria.

  • Raziuddin, F., Hassan, G., Akmal, M., Shah, S. S., Mohammad, F., Shafi, M., Bakht, J., & Zhou, W. (2011). Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pakistan Journal of Botany, 43(1), 333–340.

    CAS  Google Scholar 

  • Sánchez, A. S. & Matos, Â. P. (2018). Desalination concentrate management and valorization methods. Sustainable Desalination Handbook, 351–399.

  • Sandalio, L., Dalurzo, H., Gomez, M., Romero-Puertas, M., & Del Rio, L. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115–2126.

    Article  CAS  Google Scholar 

  • Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H., Ok, Y. S., & Vithanage, M. (2019). Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health, 41(4), 1813–1831.

    Article  CAS  Google Scholar 

  • Shah, V., & Daverey, A. (2020). Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774.

    Article  Google Scholar 

  • Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Yadav, P. & Khanna, K. (2019). Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 1–23

  • Šimonová, E., Henselová, M., Masarovičová, E., & Kohanová, J. (2007). Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biologia Plantarum, 51(3), 488–492.

    Article  Google Scholar 

  • Singh, S., Singh, A., Bashri, G., & Prasad, S. M. (2016). Impact of Cd stress on cellular functioning and its amelioration by phytohormones: An overview on regulatory network. Plant Growth Regulation, 80(3), 253–263.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Steel, R. G., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics (pp. 4–7). McGraw-Hill.

    Google Scholar 

  • Tavakkoli, E., Rengasamy, P., & McDonald, G. K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61(15), 4449–4459.

    Article  CAS  Google Scholar 

  • Vollenweider, P., Cosio, C., Günthardt-Goerg, M. S., & Keller, C. (2006). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L): Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 58(1–3), 25–40.

    Article  CAS  Google Scholar 

  • Wójcik, M., Vangronsveld, J., D’Haen, J., & Tukiendorf, A. (2005). Cadmium tolerance in Thlaspi caerulescens: II Localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany, 53(2), 163–171.

    Google Scholar 

  • Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035–1059.

    Article  CAS  Google Scholar 

  • Yadav, S., & Chandra, R. (2011). Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site Unnao India. Environmental Earth Sciences, 62(6), 1235–1243.

    Article  CAS  Google Scholar 

  • Yan, H., Filardo, F., Hu, X., Zhao, X., & Fu, D. (2016). Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L) leaves. Environmental Science and Pollution Research, 23(4), 3758–3769.

    Article  CAS  Google Scholar 

  • Yang, L. P., Zhu, J., Wang, P., Zeng, J., Tan, R., Yang, Y. Z., & Liu, Z. M. (2018). Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicology and Environmental Safety, 160, 10–18.

    Article  CAS  Google Scholar 

  • Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., & Tan, M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 175(1), 36–50.

    Article  CAS  Google Scholar 

  • Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169(4), 737–745.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Government College for Women University, Faisalabad Pakistan for providing experimental station and lab facilities. A Part of this research paper has been extracted from Master theses of Ms. Omey Habiba and Mehwish Hina. Authors also extend their appreciation to the deanship of scientific research, King Khalid university for research group program under R.G.P. 2/17/43.

Author information

Authors and Affiliations

Authors

Contributions

NA and AN: conceived the Idea and designed the experiment; NA, MA, and AN: writing, review, editing; NA, OH, MH, and MMS: performed experiment, gathered literature; MA, FMA, SA, and SMA: analyzed the data, and helps in interpretation of results; MA, AN, and MH: critically revised the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Muhammad Aqeel or Ali Noman.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhter, N., Habiba, O., Hina, M. et al. Structural, Biochemical, and Physiological Adjustments for Toxicity Management, Accumulation, and Remediation of Cadmium in Wetland Ecosystems by Typha domingensis Pers. Water Air Soil Pollut 233, 151 (2022). https://doi.org/10.1007/s11270-022-05613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05613-w

Keywords