Abstract
Agriculture is the largest consumer of water, particularly in arid and semi-arid regions, so identifying and managing surface water quality in these areas is critical to preserving water resources and ensuring sustainable agriculture. Irrigation water quality (IWQ) assessment integrated with geographic information system (GIS) of West Nile Delta, Egypt, was carried out using suitability indicators such as hazards of salinity, permeability hazard, specific ion toxicity, and miscellaneous impacts on sensitive crops. In ArcGIS 10.7, inverse distance-weighted algorithms and the Model Builder function were used to categorize irrigation water quality into different classes. According to the findings, 87% and 13% of the water samples from the study area were categorized as medium and high suitability for irrigation, respectively. The heavy metal pollution index (HPI), Nemerow index (NeI), ecological risks of heavy metal index (ERI), heavy metal evaluation index (HEI), pollution load index (PLI), and modified degree of contamination (mCd) for five selected metals, namely As, Co, Cu, Ni, and Zn, were calculated to assess heavy metal contamination levels in the study area. The results showed that HPI had 3.7% medium contamination and 96.3% high contamination; NeI was 7.4% moderately contaminated and 92.6% heavily contaminated; ERI has almost 7% low risk, 30% moderate risk, 41% considerable risk, and 22% very high risk; HEI had 100% low contamination; PLI was 100% polluted; and mCd has 18.5% moderately-heavily polluted, 63% heavily polluted, and 18.5% severely polluted samples. This research can help decision-makers manage water resources more effectively for sustainable agriculture.







Similar content being viewed by others
Data Availability
The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.
References
Ali, M. G. M., Ibrahim, M. M., El Baroudy, A., Fullen, M., Omar, E.-S.H., Ding, Z., & Kheir, A. M. S. (2020). Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta. Frontiers of Earth Science, 14(3), 522–536. https://doi.org/10.1007/s11707-019-0806-4
Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat. Iran. Environmental Earth Sciences, 72(9), 3479–3490. https://doi.org/10.1007/s12665-014-3255-0
Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 127, 819–847. https://doi.org/10.1016/j.envint.2019.03.039
APHA. (2012). Standard methods for examination of water and wastewater. American Public Health Association.
Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., & Chau, K.-W. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12(1), 177. https://doi.org/10.3390/su12010177
Asseng, S., Kheir, A. M. S., Kassie, B. T., Hoogenboom, G., Abdelaal, A. I. N., Haman, D. Z., & Ruane, A. C. (2018). Can Egypt become self-sufficient in wheat? Environmental Research Letters, 13(9), 094012. https://doi.org/10.1088/1748-9326/aada50
Baroudy, A. A. E., Ali, A. M., Mohamed, E. S., Moghanm, F. S., Shokr, M. S., Savin, I., Poddubsky, A., Ding, Z., Kheir, A. M. S., Aldosari, A. A., Elfadaly, A., Dokukin, P., & Lasaponara, R. (2020). Modeling land suitability for rice crop using remote sensing and soil quality indicators: The case study of the Nile Delta. Sustainability, 12(22), 9653. https://doi.org/10.3390/su12229653
Bhuiyan, M. A. H., Islam, M. A., Dampare, S. B., Parvez, L., & Suzuki, S. (2010). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. Journal of Hazardous Materials, 179(1–3), 1065–1077. https://doi.org/10.1016/j.jhazmat.2010.03.114
Bouaroudj, S., Menad, A., Bounamous, A., Ali-Khodja, H., Gherib, A., Weigel, D. E., & Chenchouni, H. (2019). Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere, 219, 76–88. https://doi.org/10.1016/j.chemosphere.2018.11.193
Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187(5), 306. https://doi.org/10.1007/s10661-015-4563-x
Chaturvedi, A., Bhattacharjee, S., Mondal, G. C., Kumar, V., Singh, P. K., & Singh, A. K. (2019). Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecological Indicators, 97, 239–246. https://doi.org/10.1016/j.ecolind.2018.10.023
Cieszynska, M., Wesolowski, M., Bartoszewicz, M., Michalska, M., & Nowacki, J. (2012). Application of physicochemical data for water-quality assessment of watercourses in the Gdansk Municipality (South Baltic coast). Environmental Monitoring and Assessment, 184(4), 2017–2029. https://doi.org/10.1007/s10661-011-2096-5
Dawoud, M. A., Darwish, M. M., & El-Kady, M. M. (2005). GIS-based groundwater management model for Western Nile Delta. Water Resources Management, 19(5), 585–604. https://doi.org/10.1007/s11269-005-5603-z
De La Mora-Orozco, C., Flores-Lopez, H., Rubio-Arias, H., Chavez-Duran, A., & Ochoa-Rivero, J. (2017). Developing a water quality index (WQI) for an irrigation dam. International Journal of Environmental Research and Public Health, 14(5), 439.https://doi.org/10.3390/ijerph14050439
Ding, Z., Ali, E. F., Elmahdy, A. M., Ragab, K. E., Seleiman, M. F., & Kheir, A. M. S. (2021). Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244, 106626. https://doi.org/10.1016/j.agwat.2020.106626
Ding, Z., Kheir, A. M. S., Ali, M. G. M., Ali, O. A. M., Abdelaal, A. I. N., Xe, L., Zhou, Z., Wang, B., Liu, B., & He, Z. (2020a). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10(1), 2736. https://doi.org/10.1038/s41598-020-59650-8
Ding, Z., Koriem, M. A., Ibrahim, S. M., Antar, A. S., Ewis, M. A., He, Z., & Kheir, A. M. S. (2020b). Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta. Egypt. Environmental Earth Sciences, 79(13), 313. https://doi.org/10.1007/s12665-020-09069-1
El Baroudy, A. A. (2011). Monitoring land degradation using remote sensing and GIS techniques in an area of the middle Nile Delta. Egypt. CATENA, 87(2), 201–208. https://doi.org/10.1016/j.catena.2011.05.023
Faithful, J., & Finlayson, W. (2005). Water quality assessment for sustainable agriculture in the Wet Tropics—A community-assisted approach. Marine Pollution Bulletin, 51(1), 99–112. https://doi.org/10.1016/j.marpolbul.2004.11.007
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812. https://doi.org/10.1126/science.1185383
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
Hameed, M., Sharqi, S. S., Yaseen, Z. M., Afan, H. A., Hussain, A., & Elshafie, A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region. Malaysia. Neural Computing and Applications, 28(1), 893–905. https://doi.org/10.1007/s00521-016-2404-7
Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055
Ighalo, J. O., & Adeniyi, A. G. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi.org/10.1016/j.chemosphere.2020.127569
Jafar Ahamed, A., Ananthakrishnan, S., Loganathan, K., & Manikandan, K. (2013). Assessment of groundwater quality for irrigation use in Alathur Block, Perambalur District, Tamilnadu. South India. Applied Water Science, 3(4), 763–771. https://doi.org/10.1007/s13201-013-0124-z
Kavurmaci, M., & Apaydin, A. (2019). Assessment of irrigation water quality by a geographic information system–multicriteria decision analysis-based model: A case study from Ankara. Turkey. Water Environment Research, 91(11), 1420–1432. https://doi.org/10.1002/wer.1133
Kheir, A. M. S., Ali, E. F., Ahmed, M., Eissa, M. A., Majrashi, A., & Ali, O. A. M. (2021). Biochar blended humate and vermicompost enhanced immobilization of heavy metals, improved wheat productivity, and minimized human health risks in different contaminated environments. Journal of Environmental Chemical Engineering, 9(4), 105700. https://doi.org/10.1016/j.jece.2021.105700
Lee, C.-G., Lee, S., Park, J.-A., Park, C., Lee, S. J., Kim, S.-B., An, B., Yun, S.-T., Lee, S.-H., & Choi, J.-W. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, 203–211. https://doi.org/10.1016/j.chemosphere.2016.09.093
Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County. China. Environmental Earth Sciences, 69(7), 2211–2225. https://doi.org/10.1007/s12665-012-2049-5
Liu, D., Ding, Z., Ali, E. F., Kheir, A. M. S., Eissa, M. A., & Ibrahim, O. H. M. (2021). Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Scientific Reports, 11(1), 8739.
Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711–724. https://doi.org/10.1007/s12517-012-0795-z
Maskooni, E. K., Naseri-Rad, M., Berndtsson, R., & Nakagawa, K. (2020). Use of heavy metal content and modified water quality index to assess groundwater quality in a semiarid area. Water, 12(4), 1115. https://doi.org/10.3390/w12041115
Mukherjee, I., Singh, U. K., Singh, R. P., Anshumali, K. D., Jha, P. K., & Mehta, P. (2020). Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. Science of the Total Environment, 705, 135801. https://doi.org/10.1016/j.scitotenv.2019.135801
Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300. https://doi.org/10.1016/j.jhydrol.2014.02.053
Oseke, F. I., Anornu, G. K., Adjei, K. A., & Eduvie, M. O. (2021). Assessment of water quality using GIS techniques and water quality index in reservoirs affected by water diversion. Water-Energy Nexus, 4, 25–34. https://doi.org/10.1016/j.wen.2020.12.002
Rawat, K. S., & Singh, S. K. (2018). Water quality indices and GIS-based evaluation of a decadal groundwater quality. Geology, Ecology, and Landscapes, 2(4), 240–255. https://doi.org/10.1080/24749508.2018.1452462
Rezaei, A., Hassani, H., Hassani, S., Jabbari, N., Fard Mousavi, S. B., & Rezaei, S. (2019). Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundwater for Sustainable Development, 9, 100245. https://doi.org/10.1016/j.gsd.2019.100245
Safiur Rahman, M., Saha, N., Islam, A. R. M. T., Shen, S., & Bodrud-Doza, M. (2017). Evaluation of water quality for sustainable agriculture in Bangladesh. Water, Air, & Soil Pollution, 228(10), 385. https://doi.org/10.1007/s11270-017-3543-x
Salahat, M., Al-Qinna, M., Mashal, K., & Hammouri, N. (2014). Identifying major factors controlling groundwater quality in semiarid area using advanced statistical techniques. Water Resources Management, 28, 3829–3841. https://doi.org/10.1007/s11269-11014-10712-11261
Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A., & Kurban, M. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Science of the Total Environment, 642, 864–878. https://doi.org/10.1016/j.scitotenv.2018.06.034
Seleiman, M. F., & Kheir, A. M. S. (2018a). Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere, 204, 514–522. https://doi.org/10.1016/j.chemosphere.2018.04.073
Seleiman, M. F., & Kheir, A. M. S. (2018b). Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere, 193, 538–546. https://doi.org/10.1016/j.chemosphere.2017.11.053
Seleiman, M. F., Kheir, A. M. S., Al-Dhumri, S., Alghamdi, A. G., Omar, E.-S.H., Aboelsoud, H. M., Abdella, K. A., & Abou El Hassan, W. H. (2019). Exploring optimal tillage improved soil characteristics and productivity of wheat irrigated with different water qualities.Agronomy, 9(5), 233. https://doi.org/10.3390/agronomy9050233
Sharifi, Z., Hossaini, S. M. T., & Renella, G. (2016). Risk assessment for sediment and stream water polluted by heavy metals released by a municipal solid waste composting plant. Journal of Geochemical Exploration, 169, 202–210. https://doi.org/10.1016/j.gexplo.2016.08.001
Shokr, M. S., Abdellatif, M. A., El Baroudy, A. A., Elnashar, A., Ali, E. F., Belal, A. A., Attia, W., Ahmed, M., Aldosari, A. A., Szantoi, Z., Jalhoum, M. E., & Kheir, A. M. S. (2021). Development of a spatial model for soil quality assessment under arid and semi-arid conditions.Sustainability, 13(5), 2893. https://doi.org/10.3390/su13052893
Simsek, C., & Gunduz, O. (2007). IWQ index: A GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128(1), 277–300. https://doi.org/10.1007/s10661-006-9312-8
Singh, K. R., Goswami, A. P., Kalamdhad, A. S., & Kumar, B. (2020). Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability, 22(4), 3119–3132. https://doi.org/10.1007/s10668-019-00338-z
Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143.
Thapa, R., Gupta, S., Reddy, D. V., & Kaur, H. (2017). An evaluation of irrigation water suitability in the Dwarka River basin through the use of GIS-based modelling. Environmental Earth Sciences, 76(14), 471. https://doi.org/10.1007/s12665-017-6804-5
Vu, C. T., Lin, C., Shern, C.-C., Yeh, G., Le, V. G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32–42. https://doi.org/10.1016/j.ecolind.2017.06.008
Wątor, K., & Zdechlik, R. (2021). Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality – Case study from the Podhale region (Southern Poland). Ecological Indicators, 121, 107098. https://doi.org/10.1016/j.ecolind.2020.107098
Wen, X., Lu, J., Wu, J., Lin, Y., & Luo, Y. (2019). Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652, 267–277. https://doi.org/10.1016/j.scitotenv.2018.10.250
Yıldız, S., & Karakuş, C. B. (2020). Estimation of irrigation water quality index with development of an optimum model: A case study. Environment, Development and Sustainability, 22(5), 4771–4786. https://doi.org/10.1007/s10668-019-00405-5
Zouahri, A., Dakak, H., Douaik, A., El Khadir, M., & Moussadek, R. (2014). Evaluation of groundwater suitability for irrigation in the Skhirat region, Northwest of Morocco. Environmental Monitoring and Assessment, 187(1), 4184. https://doi.org/10.1007/s10661-014-4184-9
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
El Behairy, R.A., El Baroudy, A.A., Ibrahim, M.M. et al. Modelling and Assessment of Irrigation Water Quality Index Using GIS in Semi-arid Region for Sustainable Agriculture. Water Air Soil Pollut 232, 352 (2021). https://doi.org/10.1007/s11270-021-05310-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-021-05310-0