Skip to main content
Log in

A Mini Review on Parameters Affecting the Semiconducting Oxide Photocatalytic Microbial Disinfection

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The applications of photocatalytic processes have been explored, and their ability as microbial disinfection has been recognized. This review article will introduce the related parameters in semiconducting oxide photocatalyst applications as a photocatalytic microbial disinfection in order to provide better understanding on achieving excellent performance in photocatalytic disinfection. Several significant parameters have been identified, namely, pH, catalyst loading, particle size, temperature, inorganic ions, doping, light intensity, and irradiation time. This mini review may be useful for directing the photocatalyst research under the visible light region for microbial disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alikhani, M., Lee, S., Yang, J., Nooshak, M., and Samarghandi, M., (2013). “Photocatalytic removal of Escherichia coli from aquatic solutions using synthesized ZnO nanoparticles: a kinetic study,” pp. 557–563.

  • Alrousan, D. M. A., Dunlop, P. S. M., Mcmurray, T. A., & Byrne, J. A. (2009). Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Research, 43(1), 47–54.

    Article  CAS  Google Scholar 

  • Casbeer, E., Sharma, V. K., & Li, X. (2012). Synthesis and photocatalytic activity of ferrites under visible light: a review. Separation and Purification Technology, 87, 1–14.

    Article  CAS  Google Scholar 

  • Chan, SHS, Wu, TY, Juan, JC, and Teh, CY (2011). “Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water,” no. March, pp. 1130–1158

  • Cho, M., Chung, H., Choi, W., and Yoon, J., “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection,” vol. 38, pp. 1069–1077, 2004.

  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10) Elsevier Ltd, 2997–3027.

    Article  CAS  Google Scholar 

  • Das, S., Sinha, S., Suar, M., Il Yun, S., Mishra, A., & Tripathy, S. K. (2015). Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites. Journal of Photochemistry and Photobiology B: Biology, 142, 68–76.

    Article  CAS  Google Scholar 

  • Erdem, A., Metzler, D., Cha, D., & Huang, C. P. (2015). Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International journal of Environmental Science and Technology, 12(9), 2987–2996.

    Article  CAS  Google Scholar 

  • Evgenidou, E., Fytianos, K., and Poulios, I. (2005). “Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts,” 59, 81–89.

  • Gamage McEvoy, J., & Zhang, Z. (2014). Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 19(1), 62–75.

    Article  CAS  Google Scholar 

  • Ganguly, P., Byrne, C., Breen, A., & Pillai, S. C. (2018). Applied Catalysis B : Environmental Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 225(2017), 51–75.

    Article  CAS  Google Scholar 

  • Gupta, K., Singh, R. P., Pandey, A., & Pandey, A. (2013). Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. Aureus. P. Aeruginosa and E. Coli. Beilstein Journal of Nanotechnology, 4(1), 345–351.

    Article  Google Scholar 

  • Hossain, F., Perales-perez, O. J., Hwang, S., & Román, F. (2014). Science of the total environment antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Science of the Total Environment, 466–467, 1047–1059.

    Article  Google Scholar 

  • Irfan, S., Li, L., Saleemi, A. S., & Nan, C. (2017). Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. Journal of Materials Chemistry A Mater energy Sustain., 00, 1–9.

    Google Scholar 

  • Jaffari, Z. H., Lam, S. M., Sin, J. C., & Mohamed, A. R. (2019a). Constructing magnetic Pt-loaded BiFeO 3 nanocomposite for boosted visible light photocatalytic and antibacterial activities. Environmental Science and Pollution Research, 26(10), 10204–10218.

    Article  CAS  Google Scholar 

  • Jaffari, Z. H., Lam, S. M., Sin, J. C., & Zeng, H. (2019b). Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Materials Science in Semiconductor Processing, 101, 103–115.

    Article  CAS  Google Scholar 

  • Jaffari, Z. H., Lam, S. M., Sin, J. C., Zeng, H., & Mohamed, A. R. (2019c). Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Separation and Purification Technology, 236, 116195.

    Article  Google Scholar 

  • Lam, S., Sin, J., & Rahman, A. (2017). Short Review A newly emerging visible light-responsive BiFeO 3 perovskite for photocatalytic applications: a mini review. Materials Research Bulletin, 90, 15–30.

    Article  CAS  Google Scholar 

  • Laxma, P. V., Kavitha, B., Anil, P., Reddy, K., & Kim, K. (2017). TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environmental Research, 154, 296–303.

    Article  Google Scholar 

  • Li, Q., et al. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 42(18), 4591–4602.

    Article  CAS  Google Scholar 

  • Li, Y., Zhao, J., Zhang, G., Zhang, L., Ding, S., & Shang, E. (2019). Visible-light-driven photocatalytic disinfection mechanism of Pb-BiFeO3/rGO photocatalyst. Water Research, 161, 251–261.

    Article  CAS  Google Scholar 

  • Liu, N., et al. (2019). Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO2-based composite photocatalyst under LED irradiation: influence of environmental factors and disinfection. Environmental Pollution, 247, 847–856.

    Article  CAS  Google Scholar 

  • Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). Applied Catalysis A , General A review on BiVO 4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 555, 47–74.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Ryozo, T., Nakajima, T., & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. Federation of European Microbiological Societies, 29(1–2), 211–214.

    Article  CAS  Google Scholar 

  • Nigussie, G. Y., et al. (2018). Antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles. International Journal of Photoenergy.

  • Pleskova, S. N., Golubeva, I. S., Burenina, V. N., & Korolichin, V. V. (2011). Photoinduced bactericidal activity of TiO2 films. Applied Biochemistry and Microbiology, 47(1), 23–26.

    Article  CAS  Google Scholar 

  • Ponraj, C., Vinitha, G., & Daniel, J. (2019). Visible light photocatalytic activity of Mn-doped BiFeO3 nanoparticles. International Journal of Green Energy, 00(00), 1–13.

    Google Scholar 

  • A. T. Ravichandran, 13247–13252. https://doi.org/10.1016/j.ceramint.2018.04.153 Srinivas, A. T., Karthick, R., Manikandan, A., & Baykal, A. (2018). Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi1−xAlxFeO3 (0.0 ≤ x ≤ 0.15) nanoparticles. Ceramics International, 44, 11

    Article  CAS  Google Scholar 

  • Regmi, C., Kshetri, Y. K., Kim, T., Prasad, R., & Wohn, S. (2017). Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 432, 220–231.

    Article  CAS  Google Scholar 

  • Regmi, C., Joshi, B., Ray, S. K., & Gyawali, G. (2018). Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Frontiers in Chemistry, 6, 1–6.

    Article  Google Scholar 

  • Riente, P., & Noël, T. (2019). Application of metal oxide semiconductors in light-driven organic transformations. Catalysis Science & Technology, 9(19), 5186–5232.

    Article  CAS  Google Scholar 

  • Rincón, A., & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection. Applied Catalysis B: Environmental, 51, 283–302.

    Article  Google Scholar 

  • Sreeja, S., & Shetty, V. K. (2017). Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles. Solar Energy, 157, 236–243.

    Article  CAS  Google Scholar 

  • J. Theerthagiri et al., “Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation,” J. Solid State Chem., 2018.

  • Vijayaraghavan, R. (2012). Zinc oxide based inorganic antimicrobial agents. International Journal of Science and Research, 01(02), 35–46.

    Google Scholar 

  • Wang, L., & Hu, C. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 14(12), 1227–1249.

    Article  Google Scholar 

  • Wang, W., Huang, G., Yu, J. C., & Wong, P. K. (2015). Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. Journal of Environmental Sciences, 34, 232–247.

    Article  CAS  Google Scholar 

  • Yang, C., Kan, D., & Takeuchi, I. (2012). Doping BiFeO 3: approaches and enhanced functionality. Physical Chemistry Chemical Physics, 14(46), 15953–15962.

    Article  CAS  Google Scholar 

  • Yemmireddy, V. K., & Hung, Y. (2017). Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety —opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety, 16, 617–631.

    Article  CAS  Google Scholar 

  • Zhang, N., Chen, D., Niu, F., Wang, S., Qin, L., and Huang, Y. (2016). “Enhanced visible light photocatalytic activity of Gd-doped BiFeO 3 nanoparticles and mechanism insight,” Scientific Reports, pp. 1–11.

Download references

Funding

The authors acknowledge the financial support from the Ministry of Education Malaysia (MRUN (Grant No: R.J130000.7813.4L874) and FRGS (Grant No: R.J130000.7851.5F007) and Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Aziz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daub, N.A., Aziz, F., Aziz, M. et al. A Mini Review on Parameters Affecting the Semiconducting Oxide Photocatalytic Microbial Disinfection. Water Air Soil Pollut 231, 461 (2020). https://doi.org/10.1007/s11270-020-04829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04829-y

Keywords

Navigation