Skip to main content
Log in

Evaluation of a Coagulation/Flocculation Process as the Primary Treatment of Fish Processing Industry Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fish processing sector produces huge amounts of high organic load wastewater. The use of primary-stage treatments such as the coagulation/flocculation process (C/F) reduces part of the organic load, improving subsequent stages of wastewater treatment. Aiming at a primary wastewater treatment, the present study evaluated the performance of a combined coagulation/flocculation process, using two different coagulants (natural and inorganic) with and without an auxiliary copolymer, to treat the fish processing industry wastewater analyzing to the physicochemical parameters of water quality. For this purpose, the optimal conditions of the C/F process were obtained from a Doehlert experimental design (DED), using as independent variables the concentration of coagulants (Tanfloc SH or FeCl3) and copolymer (Zetag®) and as the response variables the color and turbidity removals (%). The results show color, turbidity, chemical oxygen demand and biochemical oxygen demand removals that range between 92 and 97% using both treatments at the FeCl3 and copolymer concentration of 48.13 mg L−1 and 2.21 mg L−1, respectively, and Tanfloc SH and copolymer concentration of 144.35 mg L−1 and 1.49 mg L−1, respectively. C/F results were considered satisfactory due to the parameters’ high initial values in the raw effluent. The treated effluent presented good biodegradability, and as C/F is a primary wastewater treatment, a subsequent biological treatment is needed so that the effluent meets the discharge standards. Tanfloc SH presented a removal efficiency comparable with the FeCl3 at a primary wastewater treatment, having the advantage of a being biodegradable and non-toxic coagulant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

The authors confirm that the data and the materials supporting the findings of this study are available within the article.

References

  • Andrade, E. M., Ferreira, K. C. D., Lopes, F. B., Araújo, I. C. S., Silva, A. G. R. (2020). Balance of nitrogen and phosphorus in a reservoir in the tropical semi-arid region. Revista Ciência Agronômica, 51 (1) [online]. https://doi.org/10.5935/1806-6690.20200020

  • APHA; AWWA; WEF. Stardard Methods for Examination of Water and Wastewater. (2012), 22th ed. Washington D. C.: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

  • Barberger-Gateau, P., Letenneur, L., Deschamps, V., Pérès, K., Dartigues, J. F., & Renaud, S. (2002). Fish, meat, and risk of dementia: Cohort study. BMJ (Clinical Research Ed.), 325, 932–933.

    Article  Google Scholar 

  • Beltrán-Heredia, J., Sánchez-Martín, J., & Dávila-Acedo, M. A. (2011). Optimization of the synthesis of a new coagulant from a tannin extract. Journal of Hazardous Materials, 186, 1704–1712.

    Article  Google Scholar 

  • Bongiovani, M. C., Camacho, F. P., Coldebella, P. F., Valverde, K. C., Nishi, L., & Bergamasco, R. (2016). Removal of natural organic matter and trihalomethane minimization by coagulation/flocculation/filtration using a natural tannin. Desalination and Water Treatment, 57(12), 5406–5415.

    Article  CAS  Google Scholar 

  • Bortolatto, R., Lenhard, D. C., & Genena, A. K. (2017). Evaluation of a natural coagulant in the polishing treatment of swine slaughterhouse wastewater. Desalination and Water Treatment, 97, 126–132.

    Article  CAS  Google Scholar 

  • Box, G.E.P., Wetz, J. (1973). Criteria for judging adequacy of estimation by an approximate response function. Madison: University of Wisconsin Technical Report, n. 9.

  • Brasil. Conselho Nacional de Meio Ambiente (CONAMA), Resolution 430, of may 13, 2011. Available from: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Accessed 25 June 2019.

  • Cobbledick, J., Nguyen, A., & Latulippe, D. R. (2014). Demonstration of FBRM as process analytical technology tool for dewatering processes via CST correlation. Water Research, 58, 132–140.

    Article  CAS  Google Scholar 

  • Cristóvão, R. O., Botelho, C. M., Martins, R. J. E., Loureiro, J. M., & Boaventura, R. A. R. (2014). Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Resources and Industry, 6, 51–63. https://doi.org/10.1016/j.wri.2014.07.002.

    Article  Google Scholar 

  • Dehghani, M., & Alizadeh, M. H. (2016). The effects of the natural coagulant Moringa oleifera and alum in wastewater treatment at the Bandar Abbas oil refinery. Environmental Health Engineering and Management Journal, 3(4), 225–230.

    Article  Google Scholar 

  • FAO – Food and Agriculture Organization of United Nations (2018). The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. Rome.

  • Ferreira, S. L., Dos Santos, W. N., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry. Talanta, 63(4), 1061–1067.

    Article  CAS  Google Scholar 

  • Hameed, Y. T., Idris, A., Hussain, S. A., & Abdullah, N. A. (2016). A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to polyaluminum chloride, and application in a pilot plant. Journal of Environmental Management, 184, 494–503.

    Article  CAS  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I., Ghaleb, A. A. S., Abubakar, S., Lawal, I. M, Nasara, M. A (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: a comparative analysis. Ain Shams Engineering Journal. doi:https://doi.org/10.1016/j.asej.2020.01.018.

  • Lin, J., Couperthwaite, S. J., & Millar, G. J. (2017). Effectiveness of aluminium based coagulants for pre-treatment of coal seam water. Separation and Purification Technology, 177, 207–222.

    Article  CAS  Google Scholar 

  • Matos, A. T., Cabanellas, C. F. G., Cecon, P. R., Brasil, M. S., & Mudado, C. S. (2007). Efeito da concentração de coagulantes e do pH da solução na turbidez da água, em recirculação, utilizada no processamento dos frutos do cafeeiro. Engenharia Agrícola, 27(2), 544–551.

    Article  Google Scholar 

  • Mello, V. F. B., Abreu, J. P. G., Ferreira, J. M., Jucá, J. F. T., & Sobrinho, M. A. M. (2012). Variáveis no processo de coagulação/floculação/decantação de lixiviados de aterros sanitários urbanos. Ambi-Água, 7(2), 88–100.

    Article  Google Scholar 

  • Morais, J. L., Sirtori, C., & Peralta-Zamora, P. G. (2006). Tratamento de chorume de aterro sanitário por fotocatálise heterogênea integrada a processo biológico convencional. Química Nova, 29(1), 20–23.

    Article  Google Scholar 

  • Muniz, G. L., Borges, A. C., Souza, D. V., da Silva, T. C. F., & Batista, R. O. (2018). Comparison of the central composite rotatable design with Doehlert matrix on the optimization of the synthetic dairy effluent treatment. Water, Air & Soil Pollution, 229(9), 306. https://doi.org/10.1007/s11270-018-3965-0.

    Article  CAS  Google Scholar 

  • Nair, A. T., Makwana, A. R., & Ahammed, M. M. (2014). The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Science and Technology, 69(3), 464–478.

    Article  CAS  Google Scholar 

  • Renault, F., Sancey, B., Dabot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes – An eco-friendly approach. European Polymer Journal, 45, 1337–1348.

    Article  CAS  Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.

    Article  CAS  Google Scholar 

  • Roselet, F., Vandamme, D., Roselet, M., Muylaert, K., & Abreu, P. C. (2015). Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Research, 10, 183–188.

    Article  Google Scholar 

  • Ruschel, C. F. C., Ferrão, M. F., Santos, F. P., & Samios, D. (2016). Otimização do processo de transesterificação em duas etapas para produção de biodiesel através do planejamento experimental Doehlert. Química Nova, 39(3), 267–272. https://doi.org/10.5935/0100-4042.20160018.

    Article  CAS  Google Scholar 

  • Sahu, O. P., & Chaudhari, P. K. (2013). Review on chemical treatment of industrial waste water. Journal of Applied Sciences and Environmental Management, 17(2), 241–257.

    CAS  Google Scholar 

  • Sánchez-Martín, J., Beltrán-Heredia, J. (2012). Nature is the answer: Water and wastewater treatment by new natural-based agents, Advances in water treatment and pollution prevention (pp. 337–375). Springer Netherlands publisher.

  • Sciban, M., Klasnja, M., Antov, M., & Skrbic, B. (2009). Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource Technology, 100, 6639–6643.

    Article  CAS  Google Scholar 

  • Silva, Y. S., Naval, L. P. (2018). Segregation of solid waste from a fish-processing industry: A sustainable action. Revista Ambiente &. Água [online], 13 (2). https://doi.org/10.4136/ambi-agua.2155.

  • Singh, S., & Choubey, S. (2014). Use of tannin based natural coagulants for water treatment: An alternative to inorganic chemicals. International Journal of ChemTech Research, 6(7), 974–4290.

    Google Scholar 

  • Stefánsson, A. (2007). Iron (III) hydrolysis and solubility at 25°C. Environmental Science and Technology, 41(17), 6117–6123.

    Article  Google Scholar 

  • Tacon, A. G. J., & Metian, M. (2013). Fish matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science, 21(1), 22–38. https://doi.org/10.1080/10641262.2012.753405.

    Article  CAS  Google Scholar 

  • Thompson Junior, J. P. (2015) Passando a limpo: A flotação por ar dissolvido no tratamento de efluentes industriais. Paco Editorial publisher, 160 p.

  • Vaz, L. G. D. L., Klen, M. R. F., Veit, M. T., Silva, E. A. D., Barbiero, T. A., & Bergamasco, R. (2010). Avaliação da eficiência de diferentes agentes coagulantes na remoção de cor e turbidez em efluente de galvanoplastia. Eclética Química, 35(4), 45–54.

    Article  Google Scholar 

  • Wong, H., Mok, K. M., & Fan, X. J. (2007). Natural organic matter and formation of trihalomethanes in two water treatment processes. Desalination, 210(1–3), 44–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Caroline Zanette Barbieri.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Geolocation Information

Toledo, Paraná (Brazil); latitude, 24° 42′ 49″ S, longitude: 53° 44′ 35″ W.

Code Availability

Data was analyzed using software Statistica (version 8.0).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Land, T.M.S., Veit, M.T., da Cunha Gonçalves, G. et al. Evaluation of a Coagulation/Flocculation Process as the Primary Treatment of Fish Processing Industry Wastewater. Water Air Soil Pollut 231, 452 (2020). https://doi.org/10.1007/s11270-020-04811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04811-8

Keywords

Navigation