Skip to main content
Log in

Fungal and Bacterial Co-Bioaugmentation of a Pesticide-Degrading Biomixture: Pesticide Removal and Community Structure Variations during Different Treatments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biopurification systems (BPS) are employed for the treatment of pesticide-containing wastewaters. In this work, a biomixture (active core of BPS) complemented by the addition of the fungus Trametes versicolor was evaluated for the elimination of a mixture of pesticides under different treatment conditions. The biomixture achieved high removal of all the pesticides assayed after 16 d: atrazine (68.4%, t1/2: 9.6 d), carbendazim (96.7%, t1/2: 3.6 d), carbofuran (98.7%, t1/2: 3.1 d) and metalaxyl (96.7%, t1/2: 3.8 d). Variations in the treatment conditions including addition of the antibiotic oxytetracycline and co-bioaugmentation with a bacterial consortium did not significantly affect the removal performance of the biomixture. Bacterial and fungal community profiles determined by DGGE analyses revealed changes that responded to biomixture aging, and not to antibiotic or pesticide addition. The proposed biomixture exhibits very efficient elimination during simultaneous pesticide application; moreover, the matrix is highly stable during stressful conditions such as the co-application of antibiotics of agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, M. (1999). Biodegradation and bioremediation. San Diego: Academic Press.

    Google Scholar 

  • Bastos, A. C., & Magan, N. (2009). Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioration and Biodegradation, 63, 389–394.

    CAS  Google Scholar 

  • Bending, G. D., FrilouxM., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212, 59–63.

  • Borràs, E., Caminal, G., Sarrà, M., & Novotný, Č. (2010). Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biology and Biochemistry, 42, 2087–2093.

    Google Scholar 

  • Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R., & Wagner, M. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology, 2, 179–190.

    CAS  Google Scholar 

  • Briceño, G., Rubilar, O., & Tortella, G. (2013). Bioaumentación de una biomezcla con actinobacterias degradadoras de residuos de plaguicidas organofosforados. Pucón: Workshop Internacional y Taller Nacional Valorización.

    Google Scholar 

  • Carter, S. R., & Jewell, W. J. (1993). Biotransformation of tetrachloroethylene by anaerobic attached films at low temperatures. Water Research, 27, 607–615.

    CAS  Google Scholar 

  • Castillo, M. D. P., Torstensson, L., & Stenström, J. (2008). Biobeds for environmental protection from pesticide use, a review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.

    CAS  Google Scholar 

  • Castillo-González, H., Pérez-Villanueva, M., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2017). Antibiotics do not affect the degradation of fungicides and enhance the mineralization of chlorpyrifos in biomixtures. Ecotoxicology and Environmental Safety, 139, 481–487.

    Google Scholar 

  • Castro-Gutiérrez, V., Masís-Mora, M., Caminal, G., Vicent, T., Carazo-Rojas, E., Mora-López, M., & Rodríguez-Rodríguez, C. E. (2016). A microbial consortium from a biomixture swiftly degrades high concentrations of carbofuran in fluidized-bed reactors. Process Biochemistry, 51, 1585–1593.

    Google Scholar 

  • Castro-Gutiérrez, V., Masís-Mora, M., Diez, M. C., Tortella, G. R., & Rodríguez-Rodríguez, C. E. (2017). Aging of biomixtures: Effects on carbofuran removal and microbial community structure. Chemosphere, 168, 418–425.

    Google Scholar 

  • Castro-Gutiérrez, V., Masís-Mora, M., Carazo-Rojas, E., Mora-López, M., & Rodríguez-Rodríguez, C. E. (2018). Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture. Environmental Science and Pollution Research, 25, 11787–11799.

    Google Scholar 

  • Chen, Q., Yang, B., Wang, H., He, F., Gao, Y., & Scheel, R. A. (2015). Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination. Environmental Science and Pollution Research, 22, 996–1007.

    CAS  Google Scholar 

  • Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015a). Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environmental Science and Pollution Research, 22, 9839–9848.

    CAS  Google Scholar 

  • Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015b). Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix. Environmental Science and Pollution Research, 22, 19184–19193.

    CAS  Google Scholar 

  • Chu, B., & Eivazi, F. (2015). Enhancing biodegradation of herbicides using biobed systems. Journal of Environmental Indicators 9, 32–33.

    Google Scholar 

  • Coppola, L., Castillo, P., & Vischetti, C. (2011). Degradation of isoproturon and bentazone in peat and compost-based biomixtures. Pest Management Science, 67, 107–113.

    CAS  Google Scholar 

  • De Wilde, T., Spanoghe, P., Sniegowksi, K., Ryckeboer, J., Jaeken, P., & Springael, D. (2010). Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material. Chemosphere, 78, 56–60.

    Google Scholar 

  • Doddapaneni, H., & Yadav, J. S. (2004). Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 65, 559–565.

    CAS  Google Scholar 

  • Edwards, E. A., & Cox, E. E. (1997). Field and laboratory evidence of sequential aerobic chlorinated solvent biodegradation. In In situ and on site bioreclamation (pp. 261–265). Columbus: Batelle Press.

    Google Scholar 

  • Eggert, C., Temp, U., & Eriksson, K. E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62, 1151–1158.

    CAS  Google Scholar 

  • Fogg, P., Boxall, A. B., Walker, A., & Jukes, A. A. (2003). Pesticide degradation in a ‘biobed’composting substrate. Pest Management Science, 59, 527–537.

    CAS  Google Scholar 

  • Font-Segura, X., Gabarrell-Durany, X., Lozano, R., & Vicent-Huguet, T. (1993). Detoxification pretreatment of black liquor derived from non-wood feedstock with white-rot fungi. Environmental Technology, 14, 681–687.

    Google Scholar 

  • González-Laredo, R. F. G., Castro, M. R., Guzmán, N. E. R., Infante, J. A. G., Moreno-Jiménez, M. R., & Karchesy, J. J. (2015). Wood preservation using natural products. Madera Bosques, 21, 63–76.

    Google Scholar 

  • Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air, and Soil Pollution, 3, 131–142.

    CAS  Google Scholar 

  • Hickey, W. J., Fuster, D. J., & Lamar, R. T. (1994). Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biology and Biochemistry, 26, 1665–1671.

    CAS  Google Scholar 

  • Huete-Soto, A., Castillo-González, H., Masís-Mora, M., Chin-Pampillo, J. S., & Rodríguez-Rodríguez, C. E. (2017a). Effects of oxytetracycline on the performance and activity of biomixtures: Removal of herbicides and mineralization of chlorpyrifos. Journal of Hazardous Materials, 321, 1–8.

    CAS  Google Scholar 

  • Huete-Soto, A., Masís-Mora, M., Lizano-Fallas, V., Chin-Pampillo, J. S., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2017b). Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline. Chemosphere, 169, 558–567.

    CAS  Google Scholar 

  • Jiménez-Gamboa, D., Castro-Gutiérrez, V., Fernández-Fernández, E., Briceño-Guevara, S., Masís-Mora, M., Chin-Pampillo, J. S., Mora-López, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2018). Expanding the application scope of on-farm biopurification systems: Effect and removal of oxytetracycline in a biomixture. Journal of Hazardous Materials, 342, 553–560.

    Google Scholar 

  • Kennedy, D. W., Aust, S. D., & Bumpus, J. A. (1990). Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Applied and Environmental Microbiology, 56, 2347–2353.

    CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54, 305–315.

    CAS  Google Scholar 

  • Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22, 1050–1064.

    CAS  Google Scholar 

  • Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2016). Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems. Biology and Fertility of Soils, 52, 243–250.

    Google Scholar 

  • Marinozzi, M., Coppola, L., Monaci, E., Karpouzas, D. G., Papadopoulou, E., Menkissoglu-Spiroudi, U., & Vischetti, C. (2013). The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environmental Science and Pollution Research, 20, 2546–2555.

    CAS  Google Scholar 

  • McErlean, C., Marchant, R., & Banat, I. M. (2006). An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek, 90, 147–158.

    CAS  Google Scholar 

  • Mir-Tutusaus, J. A., Masís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal, G., Vicent, T., & Rodríguez-Rodríguez, C. E. (2014). Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of The Total Environment, 500, 235–242.

    Google Scholar 

  • Murillo-Zamora, S., Castro-Gutiérrez, V., Masís-Mora, M., Lizano-Fallas, V., & Rodríguez-Rodríguez, C. E. (2017). Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure. Chemosphere, 186, 625–634.

    CAS  Google Scholar 

  • Neilson, J. W., Jordan, F. L., & Maier, R. M. (2013). Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods, 92, 256–263.

    CAS  Google Scholar 

  • Novotný, Č., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J., & Zadražil, F. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 159–168.

    Google Scholar 

  • Płaza, G. A., Upchurch, R., Brigmon, R. L., Whitman, W. B., & Ulfig, K. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Polish Journal of Environmental Studies, 13, 315–318.

    Google Scholar 

  • Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.

    CAS  Google Scholar 

  • Quintero, J. C., Lu-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2007). Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. International Biodeterioration & Biodegradation, 60, 319–326.

    CAS  Google Scholar 

  • Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of Hazardous Materials, 140, 325–332.

    CAS  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Castro-Gutiérrez, V., Chin-Pampillo, J. S., & Ruiz-Hidalgo, K. (2013). On-farm biopurification systems: Role of white rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiology Letters, 345, 1–12.

    Google Scholar 

  • Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Carazo, E., & Rodríguez-Rodríguez, C. E. (2014). Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: From mineralization to toxicity reduction. Process Biochemistry, 49, 2266–2271.

    CAS  Google Scholar 

  • Singh, B. K., & Kuhad, R. C. (1999). Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Letters in Applied Microbiology, 28, 238–241.

    CAS  Google Scholar 

  • Sniegowski, K., Bers, K., Van Goetem, K., Ryckeboer, J., Jaeken, P., Spanoghe, P., & Springael, D. (2011). Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiology Ecology, 76, 64–73.

    CAS  Google Scholar 

  • Stoilova, I., Krastanov, A., & Stanchev, V. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 1, 208–215.

    CAS  Google Scholar 

  • Struthers, J. K., Jayachandran, K., & Moorman, T. B. (1998). Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Applied and Environmental Microbiology, 64, 3368–3375.

    CAS  Google Scholar 

  • Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Biochemistry and Biotechnology, 134, 233–248.

    CAS  Google Scholar 

  • Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Acuña, J. J., Briceño, G., & Diez, M. C. (2013a). Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. Journal of Hazardous Materials, 260, 459–467.

    CAS  Google Scholar 

  • Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Briceño, G., Parra, L., & Diez, M. C. (2013b). Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. Chemosphere, 93, 1084–1093.

    CAS  Google Scholar 

  • Tortella, G. R., Rubilar, O., Stenström, J., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013c). Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation, 24, 711–720.

    CAS  Google Scholar 

  • Verhagen, P., De Gelder, L., & Boon, N. (2013). Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Current Microbiology, 67, 466–471.

    CAS  Google Scholar 

  • Vischetti, C., Monaci, E., Cardinali, A., Casucci, C., & Perucci, P. (2008). The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere, 72, 1739–1743.

    CAS  Google Scholar 

  • von Wirén-Lehr, S., del Pilar Castillo, M., Torstensson, L., & Scheunert, I. (2001). Degradation of isoproturon in biobeds. Biology and Fertility of Soils, 33, 535–540.

    Google Scholar 

  • Yu, Y., Chu, X., Pang, G., Xiang, Y., & Fang, H. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 21, 179–185.

    CAS  Google Scholar 

  • Zablotowicz, R. M., Weaver, M. A., & Locke, M. A. (2006). Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Science, 54, 538–547.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Vicerrectoría de Investigación, Universidad de Costa Rica (projects 802-B4-503 and 802-B6-137), and the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (project FI-093-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Rodríguez-Rodríguez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Gutiérrez, V., Masís-Mora, M., Carazo-Rojas, E. et al. Fungal and Bacterial Co-Bioaugmentation of a Pesticide-Degrading Biomixture: Pesticide Removal and Community Structure Variations during Different Treatments. Water Air Soil Pollut 230, 247 (2019). https://doi.org/10.1007/s11270-019-4282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4282-y

Keywords

Navigation