Skip to main content
Log in

The Prediction of Heavy Metal Permeate Flux in Complexation-Microfiltration Process: Polynomial Neural Network Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Membrane filtration techniques are distinguished among methods for wastewater treatment and fully correspond to the requirements of the green concept of chemistry and production. The limiting factor for greater application of these methods is the phenomenon of fouling and the decline of the permeate flux. In this study, polynomial neural network based on group method data handling (GMDH) algorithm was applied to predict the performance of the complexation-microfiltration process for the removal of Pb(II), Zn(II), and Cd(II) from synthetic wastewater. The influence of working parameters such as pH, initial concentration of metal ions, type of complexing agent, and pressure on flux was experimentally determined. The data obtained were used as input parameters for the GMDH model as well as for the multiple linear regression (MLR) model. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percent error (MAPE) were used for evaluation purposes. Results showed that the developed model has excellent performance in flux prediction with R2 of 0.9648.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akpor, O. B., Onolunose Ohiobor, G., & Olaolu, T. D. (2014). Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering, 2, 37–43.

    Article  Google Scholar 

  • Antanasijević, D., Antanasijević, J., Pocajt, V., & Ušćumlić, G. (2016). A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals. RSC Advances, 6, 99676–99684.

    Article  Google Scholar 

  • Badrnezhad, R., & Mirza, B. (2014). Modelling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach. Journal of Industrial and Engineering Chemistry, 20, 528–543.

    Article  CAS  Google Scholar 

  • Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256, 90–93.

    Article  CAS  Google Scholar 

  • Camarillo, R., Llanos, J., García-Fernández, L., Pérez, Á., & Cañizares, P. (2010). Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Separation and Purification Technology, 70, 320–328.

    Article  CAS  Google Scholar 

  • Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. Journal of Environmental Chemical Engineering, 5, 2782–2799.

    Article  CAS  Google Scholar 

  • Chen, H., & Kim, A. S. (2006). Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination, 192, 415–428.

    Article  CAS  Google Scholar 

  • Cheng, L. H., Cheng, Y. F., & Chen, J. (2008). Predicting effect of Interparticle interactions on permeate flux decline in CMF of colloidal suspensions: an overlapped type of local neural network. Journal of Membrane Science, 308, 54–65.

    Article  CAS  Google Scholar 

  • Chew, C. M., Aroua, M. K., & Hussain, M. A. (2017). A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. Journal of Industrial and Engineering Chemistry, 45, 145–155.

    Article  CAS  Google Scholar 

  • Chew, C. M., Aroua, M. K., & Hussain, M. A. (2018). Advanced process control for ultrafiltration membrane water treatment system. Journal of Cleaner Production, 179, 63–80.

    Article  CAS  Google Scholar 

  • Choi, Y. J., Oh, H., Lee, S., Nam, S. H., & Hwang, T. M. (2012). Investigation of the filtration characteristics of pilot-scale hollow fiber submerged MF system using cake formation model and artificial neural networks model. Desalination, 297, 20–29.

    Article  CAS  Google Scholar 

  • Crini, G., Morin-Crini, N., Fatin-Rouge, N., Déon, S., & Fievet, P. (2017). Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arabian Journal of Chemistry, 10, S3826–S3839.

    Article  CAS  Google Scholar 

  • Dasgupta, J., Sikder, J., & Mandal, D. (2017). Modelling and optimization of polymer enhanced ultrafiltration using hybrid neural-genetic algorithm based evolutionary approach. Applied Soft Computing, 55, 108–126.

    Article  Google Scholar 

  • Ennigrou, D. J., Ben Sik Ali, M., & Dhahbi, M. (2014). Copper and zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination, 343, 82–87.

    Article  Google Scholar 

  • Farlow, S. J. (1981). The GMDH algorithm of Ivakhnenko. The American Statistician, 35, 210–215.

    Google Scholar 

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5, 47–58.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gao, J., Qiu, Y., Hou, B., Zhang, Q., & Zhang, X. (2018). Treatment of wastewater containing nickel by complexation- ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field. Chemical Engineering Journal, 334, 1878–1885.

    Article  CAS  Google Scholar 

  • Giwa, A., Daer, S., Ahmed, I., Marpu, P. R., & Hasan, S. W. (2016). Experimental investigation and artificial neural networks ANNs modelling of electrically-enhanced membrane bioreactor for wastewater treatment. Journal of Water Process Engineering, 11, 88–97.

    Article  Google Scholar 

  • Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1, 1–6.

    Article  Google Scholar 

  • Guo, W., Ngo, H. H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27–34.

    Article  CAS  Google Scholar 

  • Hankins, N., Hilal, N., Ogunbiyi, O. O., & Azzopardi, B. (2005). Inverted polarity micellar enhanced ultrafiltration for the treatment of heavy metal polluted wastewater. Desalination, 185, 185–202.

    Article  CAS  Google Scholar 

  • Huang, Y., Wu, D., Wang, X., Huang, W., Lawless, D., & Feng, X. (2016). Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Separation and Purification Technology, 158, 124–136.

    Article  CAS  Google Scholar 

  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., Liu, W., & Shi, Y. (2017). Influence of Ph on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199–206.

    Article  CAS  Google Scholar 

  • Ivakhnenko, A. G., & Ivakhnenko, G. A. (1995). The review of problems solvable by algorithms of the group method of data handling (GMDH). Pattern Recognition and Image Analysis, 5(4), 527–535.

    Google Scholar 

  • Kalogirou, S. A. (2003). Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science, 29, 515–566.

    Article  CAS  Google Scholar 

  • Khosa, M. A., Shah, S. S., & Feng, X. (2014). Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution. Chemical Engineering Journal, 244, 446–456.

    Article  CAS  Google Scholar 

  • Klimkiewicz, A., Cervera-Padrell, A. E., & Van Den Berg, F. (2016). Modeling of the flux decline in a continuous ultrafiltration system with multiblock partial least squares. Industrial and Engineering Chemistry Research, 55, 10690–10698.

    Article  CAS  Google Scholar 

  • Labanda, J., Khaidar, M. S., Sabaté, J., & Llorens, J. (2011). Study of Cr (III) desorption process from a water-soluble polymer by ultrafiltration. Desalination, 281, 165–171.

    Article  CAS  Google Scholar 

  • Lam, B., Déon, S., Morin-Crini, N., Crini, G., & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 171, 927–933.

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre, J., Pongrácz, E., & Keiski, R. L. (2011). Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration. Separation and Purification Technology, 81, 41–48.

    Article  CAS  Google Scholar 

  • Liu, Q. F., Kim, S. H., & Lee, S. (2009). Prediction of microfiltration membrane fouling using artificial neural network models. Separation and Purification Technology, 70, 96–102.

    Article  CAS  Google Scholar 

  • Molinari, R., & Argurio, P. (2017). Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: a preliminary study. Water Research, 109, 327–336.

    Article  CAS  Google Scholar 

  • Moosavi, V., Talebi, A., & Hadian, M. R. (2017). Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting. Water Resources Management, 31, 43–59.

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.

    Article  Google Scholar 

  • Nandi, B. K., Moparthi, A., Uppaluri, R., & Purkait, M. K. (2010). Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models. Chemical Engineering Research and Design, 88, 881–892.

    Article  CAS  Google Scholar 

  • Oh, S. K., & Pedrycz, W. (2002). The design of self-organizing polynomial neural networks. Information Sciences, 141, 237–258.

    Article  Google Scholar 

  • Oh, S. K., Pedrycz, W., & Park, B. J. (2003). Polynomial neural networks architecture: analysis and design. Computers and Electrical Engineering, 29, 703–725.

    Article  Google Scholar 

  • Palencia, M., Rivas, B. L., & Pereira, E. (2009). Metal ion recovery by polymer-enhanced ultrafiltration using poly (vinyl sulfonic acid): fouling description and membrane-metal ion interaction. Journal of Membrane Science, 345, 191–200.

    Article  CAS  Google Scholar 

  • Pao, H. T., Fu, H. C., & Tseng, C. L. (2012). Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved Grey model. Energy, 40, 400–409.

    Article  Google Scholar 

  • Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health, 7, 1342–1365.

    Article  CAS  Google Scholar 

  • Qiu, Y. R., Mao, L. J., & Wang, W. H. (2014). Removal of manganese from waste water by complexation-ultrafiltration using copolymer of maleic acid and acrylic acid. Transactions of Nonferrous Metals Society of China (English Edition), 24, 1196–1201.

    Article  CAS  Google Scholar 

  • Rahmanian, B., Pakizeh, M., Mansoori, S. A. A., & Abedini, R. (2011). Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. Journal of Hazardous Materials, 187, 67–74.

    Article  CAS  Google Scholar 

  • Sánchez, J., Espinosa, C., Pooch, F., Tenhu, H., Pizarro, G. d. C., & Oyarzún, D. P. (2018). Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. Reactive and Functional Polymers, 127, 67–73.

    Article  Google Scholar 

  • Schmitt, F., Banu, R., Yeom, I. T., & Do, K. U. (2018). Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochemical Engineering Journal, 133, 47–58.

    Article  CAS  Google Scholar 

  • Schwarze, M. (2017). Micellar-enhanced ultrafiltration (MEUF) – state of the art. Environmental Science: Water Research & Technology, 3, 598–624.

    Google Scholar 

  • Schwarze, M., Groß, M., Moritz, M., Buchner, G., Kapitzki, L., Chiappisi, L., & Gradzielski, M. (2015). Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. Journal of Membrane Science, 478, 140–147.

    Article  CAS  Google Scholar 

  • Sekulić, Z., Antanasijević, D., Stevanović, S., & Trivunac, K. (2017). Application of artificial neural networks for estimating Cd, Zn, Pb removal efficiency from wastewater using complexation-microfiltration process. International journal of Environmental Science and Technology, 14, 1383–1396.

    Article  Google Scholar 

  • Shao, J., Qin, S., Davidson, J., Li, W., He, Y., & Zhou, H. S. (2013). Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine. Journal of Hazardous Materials, 244–245, 472–477.

    Article  Google Scholar 

  • Shi, X., Tal, G., Hankins, N. P., & Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: a review. Journal of Water Process Engineering, 1, 121–138.

    Article  Google Scholar 

  • Šiljić Tomić, A., Antanasijević, D., Ristić, M., Perić-Grujić, A., & Pocajt, V. (2018). A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: inter- and extrapolation performance with inputs’ significance analysis. Science of the Total Environment, 610–611, 1038–1046.

    Article  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality-a case study. Ecological Modelling, 220, 888–895.

    Article  CAS  Google Scholar 

  • Soleimani, R., Shoushtari, N. A., Mirza, B., & Salahi, A. (2013). Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm. Chemical Engineering Research and Design, 91, 883–903.

    Article  CAS  Google Scholar 

  • Tetko, I. V., Aksenova, T. I., Volkovich, V. V., Kasheva, T. N., Filipov, D. V., Welsh, W. J., Livingstone, D. J., & Villa, A. E. P. (2000). Polynomial neural network for linear and non-linear model selection in quantitative-structure activity relationship studies on the Internet. SAR and QSAR in Environmental Research, 11, 263–280.

    Article  CAS  Google Scholar 

  • Trivunac, K., Sekulić, Z., & Stevanović, S. (2012). Zinc removal from wastewater by a complexation-microfiltration process. Journal of the Serbian Chemical Society, 77, 1661–1670.

    Article  CAS  Google Scholar 

  • Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). Short communication a refined index of model performance. International Journal of Climatology, 32, 2088–2094.

    Article  Google Scholar 

  • Xi, X., Cui, Y., Wang, Z., Qian, J., Wang, J., Yang, L., & Zhao, S. (2011). Study of dead-end microfiltration features in sequencing batch reactor (SBR) by optimized neural networks. Desalination, 272, 27–35.

    Article  CAS  Google Scholar 

  • Yu, S., Zhang, X., Li, F., & Zhao, X. (2017). Influence of trace cobalt (II) on surfactant fouling of PVDF ultrafiltration membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 130–138.

    Article  CAS  Google Scholar 

  • Yürüm, A., Taralp, A., Biçak, N., Özbelge, H. Ö., & Yilmaz, L. (2013). High performance ligands for the removal of aqueous boron species by continuous polymer enhanced ultrafiltration. Desalination, 320, 33–39.

    Article  Google Scholar 

  • Zeng, J., Ye, H., & Hu, Z. (2009). Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions. Journal of Hazardous Materials, 161, 1491–1498.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project No. 172007 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Sekulić.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekulić, Z., Antanasijević, D., Stevanović, S. et al. The Prediction of Heavy Metal Permeate Flux in Complexation-Microfiltration Process: Polynomial Neural Network Approach. Water Air Soil Pollut 230, 23 (2019). https://doi.org/10.1007/s11270-018-4072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4072-y

Keywords

Navigation