Skip to main content
Log in

Solar Decolorization of Methylene Blue by Magnetic MgFe2O4-MWCNT/Ag3VO4 Visible Active Photocatalyst

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

MgFe2O4-MWCNT/Ag3VO4 photocatalyst was prepared for benefiting the visible region of solar spectrum. Prepared catalyst was characterized by using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). Photocatalytic activity was measured by methylene blue (MB) decolorization under visible light obtained from a 105-W tungsten light bulb. Dye decolorization and its kinetics were followed up by means of a UV-vis spectrophotometer. Kinetic model of decolorization was found to be compatible with first-order kinetics. The effects of pH and concentration of MB solution on the decolorization efficiency were determined. Low and high pH conditions were found to be more effective in increasing the MB decolorization yield and rate. On the other hand, due to the low transparency of concentrated MB solutions, an increase on decolorization time and a lowering in decolorization yield were encountered. Thanks to the magnetic MgFe2O3 nanoparticles, 96% of the catalyst could be recovered by a simple magnetic bar. It was observed that simulated wastewater containing MB was also successfully decolorized showing that visible region-sensitive MgFe2O4-MWCNT/Ag3VO4 photocatalyst can be benefited as a potential, efficient, and reusable material for the removal organic pollutants in aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, Y., Yaakob, Z., & Akhtar, P. (2016). Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catalysis Science & Technology, 6(4), 1222–1232.

    Article  CAS  Google Scholar 

  • Cao, J., Luo, B., Lin, H., Xu, B., & Chen, S. (2012). Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. Journal of Hazardous Materials, 217, 107–115.

    Article  Google Scholar 

  • Chen, Y., Crittenden, J. C., Hackney, S., Sutter, L., & Hand, D. W. (2005). Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environmental Science & Technology, 39(5), 1201–1208.

    Article  CAS  Google Scholar 

  • Chen, S., Zhao, W., Liu, W., Zhang, H., Yu, X., & Chen, Y. (2009). Preparation, characterization and activity evaluation of pn junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. Journal of Hazardous Materials, 172(2–3), 1415–1423.

    CAS  Google Scholar 

  • Dürkop, T., Getty, S. A., Cobas, E., & Fuhrer, M. S. (2004). Extraordinary mobility in semiconducting carbon nanotubes. Nano Letters, 4(1), 35–39.

    Article  Google Scholar 

  • Fu, H., Pan, C., Yao, W., & Zhu, Y. (2005). Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B, 109(47), 22432–22439.

    Article  CAS  Google Scholar 

  • Gao, L., Li, Z., & Liu, J. (2017). Facile synthesis of Ag3VO4/β-AgVO3 nanowires with efficient visible-light photocatalytic activity. RSC Advances, 7(44), 27515–27521.

    Article  CAS  Google Scholar 

  • Ge, L., Han, C., & Liu, J. (2011). Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental, 108, 100–107.

    Article  Google Scholar 

  • Hamdaoui, O., & Chiha, M. (2007). Removal of methylene blue from aqueous solutions by wheat bran. Acta Chimica Slovenica, 54(2), 407–418.

  • Hassena, H. (2016). Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Modern Chemistry & Applications, 4, 1–5.

    Article  Google Scholar 

  • Hu, X., & Hu, C. (2007). Preparation and visible-light photocatalytic activity of Ag3VO4 powders. Journal of Solid State Chemistry, 180(2), 725–732.

    Article  CAS  Google Scholar 

  • Huang, F., Chen, L., Wang, H., & Yan, Z. (2010). Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal, 162(1), 250–256.

    Article  CAS  Google Scholar 

  • Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., Zhao, Z., & Zhang, R. (2012). High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 217, 92–99.

    Article  Google Scholar 

  • Konta, R., Kato, H., Kobayashi, H., & Kudo, A. (2003). Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Physical Chemistry Chemical Physics, 5(14), 3061–3065.

    Article  CAS  Google Scholar 

  • Kos, L., & Perkowski, J. (2003). Decolouration of real textile wastewater with advanced oxidation processes. Fibres and textiles in Eastern Europe, 11(4), 81–85.

    CAS  Google Scholar 

  • Li, Y. C. M., Tsai, R. H., & Huang, C. M. (2012). Preparation of nano-sized silver vanadates: characterization and photocatalytic activity. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 226(1), 35–38.

    CAS  Google Scholar 

  • Li, T., Wang, T., Qu, G., Liang, D., & Hu, S. (2017). Synthesis and photocatalytic performance of reduced graphene oxide–TiO2 nanocomposites for orange II degradation under UV light irradiation. Environmental Science and Pollution Research, 24(13), 12416–12425.

    Article  CAS  Google Scholar 

  • Mamba, G., Mamo, M. A., Mbianda, X. Y., & Mishra, A. K. (2014). Nd, N, S-TiO2 decorated on reduced graphene oxide for a visible light active photocatalyst for dye degradation: comparison to its MWCNT/Nd, N, S-TiO2 analogue. Industrial & Engineering Chemistry Research, 53(37), 14329–14338.

    Article  CAS  Google Scholar 

  • Mondal, S., Reyes, M. E. D. A., & Pal, U. (2017). Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Advances, 7(14), 8633–8645.

    Article  CAS  Google Scholar 

  • Ouyang, S., Li, Z., Ouyang, Z., Yu, T., Ye, J., & Zou, Z. (2008). Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4. The Journal of Physical Chemistry C, 112(8), 3134–3141.

    Article  CAS  Google Scholar 

  • Peng, R., Lin, C., Baltrusaitis, J., Wu, C. M., Dimitrijevic, N. M., Rajh, T., May, S., & Koodali, R. T. (2014). Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 16(5), 2048–2061.

    Article  CAS  Google Scholar 

  • Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., & Balkus Jr., K. J. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2(6), 949–956.

    Article  CAS  Google Scholar 

  • Phaltane, S. A., Vanalakar, S. A., Bhat, T. S., Patil, P. S., Sartale, S. D., & Kadam, L. D. (2017). Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. Journal of Materials Science: Materials in Electronics, 28(11), 8186–8191.

    CAS  Google Scholar 

  • Ran, R., Meng, X., & Zhang, Z. (2016). Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 196, 1–15.

    Article  CAS  Google Scholar 

  • Shahid, M., Jingling, L., Ali, Z., Shakir, I., Warsi, M. F., Parveen, R., & Nadeem, M. (2013). Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation. Materials Chemistry and Physics, 139(2–3), 566–571.

    Article  CAS  Google Scholar 

  • Shakir, I., Sarfraz, M., Ali, Z., Aboud, M. F., & Agboola, P. O. (2016). Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. Journal of Alloys and Compounds, 660, 450–455.

    Article  CAS  Google Scholar 

  • Sheykhan, M., Mohammadnejad, H., Akbari, J., & Heydari, A. (2012). Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst. Tetrahedron Letters, 53(24), 2959–2964.

    Article  CAS  Google Scholar 

  • Sivakumar, V., Suresh, R., Giribabu, K., & Narayanan, V. (2015). AgVO3 nanorods: synthesis, characterization and visible light photocatalytic activity. Solid State Sciences, 39, 34–39.

    Article  CAS  Google Scholar 

  • Tao, X., Hong, Q., Xu, T., & Liao, F. (2014). Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. Journal of Materials Science: Materials in Electronics, 25(8), 3480–3485.

    CAS  Google Scholar 

  • Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013a). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326–8339.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, P., Cao, Y., Chen, J., Li, W., Shao, Y., Zheng, Y., & Li, D. (2013b). A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Applied Catalysis B: Environmental, 136, 94–102.

    Article  Google Scholar 

  • Xiao, Q., Zhang, J., Xiao, C., & Tan, X. (2008). Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catalysis Communications, 9(6), 1247–1253.

    Article  CAS  Google Scholar 

  • Xu, H., Li, H., Wu, C., Chu, J., Yan, Y., Shu, H., & Gu, Z. (2008). Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. Journal of Hazardous Materials, 153(1–2), 877–884.

    Article  CAS  Google Scholar 

  • Xu, H., Li, H., Xu, L., Wu, C., Sun, G., Xu, Y., & Chu, J. (2009). Enhanced photocatalytic activity of Ag3VO4 loaded with rare-earth elements under visible-light irradiation. Industrial & Engineering Chemistry Research, 48(24), 10771–10778.

    Article  CAS  Google Scholar 

  • Zhang, J., Xiong, Z., & Zhao, X. S. (2011). Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. Journal of Materials Chemistry, 21(11), 3634–3640.

    Article  CAS  Google Scholar 

  • Zhang, L., He, Y., Ye, P., Wu, Y., & Wu, T. (2013). Enhanced photodegradation activity of rhodamine B by MgFe2O4/Ag3VO4 under visible light irradiation. Catalysis Communications, 30, 14–18.

    Article  Google Scholar 

  • Zhu, Q., Wang, W. S., Lin, L., Gao, G. Q., Guo, H. L., Du, H., & Xu, A. W. (2013). Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability. The Journal of Physical Chemistry C, 117(11), 5894–5900.

    Article  CAS  Google Scholar 

  • Zou, X., Dong, Y., Zhang, X., & Cui, Y. (2016). Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Applied Surface Science, 366, 173–180.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Research foundation of Dokuz Eylul University (Project 2018.KB.FEN.011) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinyas Polat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, K., Yurdakoc, M. Solar Decolorization of Methylene Blue by Magnetic MgFe2O4-MWCNT/Ag3VO4 Visible Active Photocatalyst. Water Air Soil Pollut 229, 331 (2018). https://doi.org/10.1007/s11270-018-3959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3959-y

Keywords

Navigation