Skip to main content
Log in

HSP70 as a Biomarker: an Excellent Tool in Environmental Contamination Analysis—a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

HSP70 are the most studied proteins and among all HSPs are highlighted due to their high sensitivity and abundance, as well as being ubiquitously expressed and associated with all subcellular compartments. For this reason, this work specifically approaches HSP70, since its multiple responsibilities actively participate in the homeostasis of all living organisms and its rapid response to any agent stressor is efficient in assessing environmental pollution/contamination processes. HSP70, heat shock proteins thus classified according to their molecular weight of 70 kDa, are proteins that have maintained their structures conserved from the most primitive to the most complex organisms. They belong to the chaperone family, which comprises proteins with different structures that share a common function. In general, they participate in the process of correct folding of proteins; however, it has been described that they also participate in numerous complex processes of metabolism; its synthesis can usually be increased or decreased under stressful conditions. The classical activation of this protein is due to the increase in environmental temperature, but several factors can trigger the gene expression process of this protein, not only as the increase or decrease of heat or cold, but also the exposure to substances of a chemical nature, physical or biological (metals, metabolism inhibitors, chemotherapeutic agents, inflammatory and infectious processes, processes leading to cell death, the cycle of cell division itself and growth factors, cellular mechanisms considered normal). Given the broad repercussion of these proteins in metabolic processes and in organism physiology, numerous studies have evaluated the HSP70 production under adverse conditions, highlighting their connection to pollution and environmental contamination. Hence, this work aimed to literature review the vast array of HSP70 metabolic functions and its possible applications as biomarkers in the evaluation of contaminated environments by compiling the different physiological responses observed in various animal groups exposed to different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alves Filho, M. (2008). Chaperonas, as ‘damas de companhia’ das proteínas. Jornal da Unicamp, 413, 9.

    Google Scholar 

  • Ahn, S. G., & Thiele, D. J. (2003). Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes & Development, 17, 516–528.

    Article  CAS  Google Scholar 

  • Ansoar-Rodríguez, Y., Christofoletti, C. A., Correia, J. E., Souza, R. B., Moreira-de-Sousa, C., Marcato, A. C. C., BUENO, O. C., Malaspina, O., Silva-Zacarin, E. C. M., & Fontanetti, C. S. (2016). Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid: Histopathology and heat shock protein in situ localization. Journal of Environmental Science and Health. Part B. Pesticides, Food Contaminants, and Agricultural Wastes, 51, 881–887.

    Article  CAS  Google Scholar 

  • Aruda, A. M., Baumgartner, M. F., Reitzel, A. M., & Tarrant, A. M. (2011). Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Journal of Insect Physiology, 57, 665–675.

    Article  CAS  Google Scholar 

  • Arya, R., Mallik, M., & Lakhotia, S. C. (2007). Heat shock genes—integrating cell survival and death. Journal of Biosciences, 32(3), 595–610.

    Article  CAS  Google Scholar 

  • Augustyniak, M., Tarnawska, M., Babczyn’ska, A., & Augustyniak, M. (2009). Hsp70 level in progeny of aging grasshoppers from variously polluted habitats and additionally exposed to zinc during diapause. Journal of Insect Physiology, 55, 735–741.

    Article  CAS  Google Scholar 

  • Benham, B., & Ling, E. J. (2011). Virginia household water quality program: shock chlorination: disinfecting private household water supply systems. http://www.wellwater.bse.vt.edu/files/Well_Informed_Newsletter-Mar2011.pdf. Accessed 10 November 2017.

  • Bensaude, O., & Morange, M. (1983). Spontaneous high expression of heat shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO (Eur Mol Biol Organ) J, 2, 173–177.

    Article  CAS  Google Scholar 

  • Ben-Zvi, A. P., & Goloubinoff, P. (2001). Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. Journal of Structural Biology, 135, 84–93.

    Article  CAS  Google Scholar 

  • Borowska, J., & Pyza, E. (2011). Effects of heavy metals on insect immunocompetent cells. Journal of Insect Physiology, 57(6), 760–770.

    Article  CAS  Google Scholar 

  • Böttger, S., Jerszyk, E., Low, B., & Walker, C. (2008). Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53. Cancer Research, 68, 777–782.

    Article  CAS  Google Scholar 

  • Braeckman, B., Raes, H., & Van Hoye, D. (1997). Heavy-metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells. Cell Biology and Toxicology, 13(6), 389–397.

    Article  CAS  Google Scholar 

  • Castro, S. V., Lobo, C. H., Figueiredo, J. R., & Rodrigues, A. P. R. (2013). Proteínas de choque térmico hsp70: estrutura e atuação em resposta ao estresse celular. Acta Veterinaria Brasilica, 7(4), 261–271.

    Google Scholar 

  • Cellura, C., Toubiana, M., Parrinello, N., & Roch, p. (2006). HSP70 gene expression. In Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendida or Micrococcus lysodeikticus. Development & Comparative Immunology, 30(11), 984–997.

  • Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10(2), 86–103.

    Article  CAS  Google Scholar 

  • Chi, S., & Mestril, R. (1996). Stable expression. Of a human HSP70 gene in a rat myogenic cell line confers protection against endotoxin. American Physiological Society, C1017-C1021.

  • Coelho, M. P. M., Moreira-de-Sousa, C., Souza, R. B., Ansoar-Rodríguez, Y., Silva-Zacarin, E. C. M., & Fontanetti, C. S. (2017). Toxicity evaluation of vinasse and biossolid sample in diplopod midgut: heat shock protein in situ localization. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9754-2.

  • Del Razo, L. M., Quintanilla-Vega, B., Brambila-Colombres, E., Calderón-Aranda, E., Manno, M., & Albores, A. (2001). Stress proteins induced by arsenic. Toxicology and Applied Pharmacology, 177, 132–148.

    Article  CAS  Google Scholar 

  • Denlinger, D. L., Rinehart, J. P., Yocum, G. D. (2001). Stress proteins: A role in insect diapause? In: D.L. Denlinger, D.L., J.M. Giebultowicz, J.M., Saunders, D.S. (Org.). Insect timing: circadian rhythmicity to seasonality (pp. 155-171). Elsevier.

  • Didelot, C., Lanneau, D., Brunet, M., Joly, A. L., Thonel, A. D., Chiosis, G., & Garrido, C. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Current Medicinal Chemistry, 14, 2839–2847.

    Article  CAS  Google Scholar 

  • Dini, L., Lanubile, R., Tarantino, P., Mandich, A., & Cataldi, E. (2006). Expression of stress proteins 70 in tilapia (Oreochromis mossambicus) during confinement and crowding stress. Italian Journal of Zoology, 73(2), 117–124.

    Article  CAS  Google Scholar 

  • Doğanlar, Z. B., Doğanlar, O., & Tabakçıoğlu, K. (2014). Genotoxic effects of heavy metal mixture in Drosophila melanogaster: expressions of heat shock proteins, RAPD profiles and mitochondrial DNA sequence. Water, Air, and Soil Pollution, 225, 1–14.

    Article  Google Scholar 

  • Doganlar, O., & Doganlar, Z. B. (2015). Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture. Arch Biol Sci, 67, 869–876.

    Article  Google Scholar 

  • Evans, C. G., Chang, L., & Gestwicki, J. E. (2010). Heat shock protein 70 (Hsp70) as an emerging drug target. Journal of Medicinal Chemistry, 53(12), 4585–4602.

    Article  CAS  Google Scholar 

  • Ekambaram, P., & Narayanan, M. (2017). Upregulation of HSP70 extends Cytoprotection to fish brain under xenobiotic stress. Journal of FisheriesSciences.com, 11(1), 11–20.

    Article  CAS  Google Scholar 

  • Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N., & Lindquist, S. (1992). The consequences of expressing hsp70 in Drosophila cell at normal temperatures. Genes & Development, 6, 1402–1413.

    Article  CAS  Google Scholar 

  • Feder, E. M., Parsell, A. D., Lindquist, S. (1995). The stress response and stress proteins. In: J. J. Lemasters & C. Oliver (Ed), Cell biology of trauma (pp. 177–191). CRC Press Boca Raton.

  • Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and ecological physiological. Annual Review of Physiology, 61, 243–282.

    Article  CAS  Google Scholar 

  • Golli-Bennour, E. E., & Bacha, H. (2011). Hsp70 expression as biomarkers of oxidative stress: Mycotoxins’ exploration. Toxicology, 287, 1–7.

    Article  CAS  Google Scholar 

  • Gust, M., Fortier, M., Garric, J., Fournier, M., & Gagné, F. (2013). Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. Science of the Total Environment, 445–446, 210–218.

    Article  CAS  Google Scholar 

  • Hamer,B., Hamer, D. P., Müller, W. E. G., Batel, R. (2004). Stress-70 proteins in marine mussel Mytilus galloprovincialis as biomarkers of environmental pollution: a field study. Environment International 30 (7):873–882

  • Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U., & Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science, 276, 431–435.

    Article  CAS  Google Scholar 

  • Jäättela, M. (1995). Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. International of Journal of Cancer, 60, 689–693.

    Article  Google Scholar 

  • Jäättela, M., Wissing, D., Kokholm, K., Kallunki, T., & Egeblad, M. (1998). Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. The EMBO Journal, 17(21), 6124–6134.

    Article  Google Scholar 

  • Jäättela, M. (1999). Escaping cell death: survival proteins in cancer. Experimental Cell Research, 248, 30–43.

    Article  Google Scholar 

  • Jesus, T. F., Inácio, A., & Coelho, M. M. (2013). Different levels of hsp70 and hsc70 mRNA expression in Iberian fish exposed to distinct river conditions. Genetics and Molecular Biology, 36(1), 61–69.

    Article  CAS  Google Scholar 

  • Jiang, J., Maes, E. G., Taylor, A. B., Wang, L., Hinck, A. P., Lafer, A. M., & Sousa, R. (2007). Structural basis of J cochaperone binding and regulation of Hsp70. Molecular Cellular Biology, 28(3), 422–433.

    CAS  Google Scholar 

  • Jonsson, H., Schiedek, D., & Goksoyr, A. (2006). Expression of cytoskeletal proteins, cross-reacting with anti-CYP1A, in Mytilus sp. exposed to organic contaminants. Aquatic Toxicology, 78S, S42–S48.

    Article  CAS  Google Scholar 

  • Kafel, A., Nowak, A., Bembenek, J., SzczygieŁ, J., Nakonieczny, M., & Świergosz-Kowalewskab, R. (2012). The localization of HSP70 and oxidative stress indices in heads os Spodoptera exigua larvae in a cadmium-exposed population. Ecotoxicology and Environmental Safety, 78, 22–27.

    Article  CAS  Google Scholar 

  • Kampinga, H. H., & Craig, E. A. (2010). The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity. Nature reviews—Molecular cell biology, 11(8), 579–592.

    Article  CAS  Google Scholar 

  • King, A. M., & MacRae, T. H. (2015). Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 60, 59–75.

    Article  CAS  Google Scholar 

  • Knigge, T., Bachmann, L., & Köhler, H. R. (2014). An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda). Cell Stress and Chaperones, 19, 741–747.

    Article  CAS  Google Scholar 

  • Köhler, H. R., Eckwert, H., Triebskorn, R., & Bengtsson, G. (1999). Interaction between tolerance and 70 kDa stress protein (hsp70) induction in collembolan populations exposed to long-term metal pollution. Applied Soil Ecology, 11, 43–52.

    Article  Google Scholar 

  • Köhler, H. R., Triebskorn, R., Stöcker, W., Kloetzel, P. M., & Alberti, G. (1992). The 70 kD heat shock protein (hsp70) in soil invertebrates: a possible tool for monitoring environmental toxicants. Archives of Environmental Contamination and Toxicology, 22(3), 334–338.

    Article  Google Scholar 

  • Köhler, H. R., Rahman, B., Gräff, S., Berkus, M., & Triebskorn, R. (1996). Expression of the stress-70 protein family (hsp70) due to heavy metal contamination in the slug, Deroceras reticulatum: an approach to monitor sublethal stress conditions. Chemosphere, 33(7), 1327–1340.

    Article  Google Scholar 

  • Li, H., Toubiana, M., Monfort, P., & Roch, P. (2009). Influence of temperature, salinity and E. coli tissue content on immune gene expression in mussel: Results from a 2005–2008 survey. Developmental & Comparative Immunology, 33(9), 974–979.

    Article  CAS  Google Scholar 

  • Liu, T., Pan, L., Cai, Y., & Miao, J. (2015). Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum. Gene, 555, 108–118.

    Article  CAS  Google Scholar 

  • Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670–684.

    Article  CAS  Google Scholar 

  • Mello, D. F., Oliveira, E. S., Vieira, R. C., Simões, E., Trevisan, R., Dafre, A. L., & Barraco, M. A. (2012). Cellular and transcriptional responses of Crassostrea gigas Hemocytes exposed in vitro to brevetoxin (PbTx-2). Marine Drugs, 10, 583–597.

    Article  CAS  Google Scholar 

  • Mello, D. F., da Silva, P. M., Barracco, M. A., Soudant, P., & Hégaret, H. (2013). Effects of the dinoflagellate Alexandrium minutum and its toxin (saxitoxin) on the functional activity and gene expression of Crassostrea gigas hemocytes. Harmful Algae, 26, 45–51.

    Article  CAS  Google Scholar 

  • Meyer, T. N., & Silva, A. L. (1999). Resposta celular ao estresse. Revista da Associação Médica Brasileira, 45(2), 181–188.

    Article  CAS  Google Scholar 

  • Mi’covi’c, V., Bulog, A., Kuˇci ´c, N., Jakovac, H., & Radoˇsevi’c-Staˇsi´, B. (2009). Metallothioneins and heat shock proteins 70 in marine mussels as sensors of environmental pollution in Northern Adriatic Sea. Environmental Toxicology and Pharmacology, 28, 439–447.

    Article  CAS  Google Scholar 

  • Mishra, S. R., & Palai, T. K. (2014). Importance of heat shock protein 70 in livestock—at cellular level. Journal of Molecular Pathophysiology, 3(2), 30–32.

    Article  Google Scholar 

  • Mizrahi, T., Heller, J., Goldenberg, S., & Arad, Z. (2012). Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats. Cell Stress and Chaperones, 17, 523–527.

    Article  CAS  Google Scholar 

  • Monari, M., Foschi, J., Rosmini, M. G., & Serrazanetti, G. P. (2011). Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. Journal of Experimental Marine Biology and Ecology, 397, 71–78.

  • Morimoto, R., & Fodor, E. (1984). Cell-specific expression of heath shock proteins in chicken reticulocytes and lymphocytes. The Journal of Cell Biology, 99, 1316–1323.

    Article  CAS  Google Scholar 

  • Moyes, C. D., & Schulte, P. M. (2010). Princípios de fisiologia animal. pp. 938. Editora: Artmed Editora S. A.

  • Nadeau, D., Plante, I., Morrow, G., & Tanguay, R. M. (2001). Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestres. Cell Stress Chaperon, 6, 153–163.

    Article  CAS  Google Scholar 

  • Patruno, M., Thorndyke, M. C., Carnevali, M. D. C., Bonasoro, F., & Beesley, P. W. (2001). Growth factor, heat-shock proteins and regeneration in echinoderms. Journal of Experimental Biology, 204, 843–848.

    CAS  Google Scholar 

  • Sabirzhanov, B., Stoica, B. A., Hanscom, M., Piao, C. S., & Faden, A. L. (2012). Over-expression of HSP70 attenuates caspase-dependent and caspase independent pathways and inhibits neuronal apoptosis. Journal of Neurochemistry, 123(4), 542–554.

    Article  CAS  Google Scholar 

  • Sable, A., Rai, K. M., Choudhary, A., Yadav, V. K., Agarwal, S. K., & Sawant, S. V. (2018). Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Scientific Reports, 8, 1–17.

    Article  CAS  Google Scholar 

  • Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., & Garrido, C. (2007). Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. Journal of Leukocyte Biology, 81, 15–27.

    Article  CAS  Google Scholar 

  • Sharma, D., & Masison, D. C. (2009). Hsp70 structure, function, regulation and influence on yeast Prions. Protein & Peptide Letters, 16(6), 571–581.

    Article  CAS  Google Scholar 

  • Silins, I., & Högberg, J. (2011). Combined toxic exposures and human health: biomarkers of exposure and effect. International Journal of Environmental Research and Public Health, 8, 629–647.

    Article  Google Scholar 

  • Silva-Zacarin, E. C. M., Chauzat, M. P., Zeggane, S., Drajnudel, P., Schurr, F., Faucon, J. P., Malaspina, O., & Engler, J. A. (2012). Protocol for optimization of histological, histochemical and immunohistochemical analyses of larval tissues: application in histopathology of honey bee. Current microscopy contributions to advances in science and technology, 1, 696–703.

    Google Scholar 

  • Silva-Zacarin, E. C. M., Gregorc, A., Silva de Moraes, R. L. M. (2006). In situ localization of heat-shock protein and cell death labelling in the salivary gland of acaricide-treated honey bee larvae. Apidologie, 37, 507-516

  • Simon, M. M., Reikerstorfer, A., Schwarz, A., Krone, C., Luger, T. A., Jäättela, M., & Schwarz, T. (1995). Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts: Evidence for increased cell viability and suppression of cytokine release. The Journal of Clinical Investigation, 95, 926–933.

    Article  CAS  Google Scholar 

  • Somero, G. N. (1995). Protein and temperature. Annual Review of Physiology, 57, 43–68.

    Article  CAS  Google Scholar 

  • Söyüt, H., Beydemir, S., Ceyhun, S. B., Erdogan, O., & Kaya, E. D. (2012). Changes in carbonic anhydrase activity and gene expression of Hsp70 in rainbow trout (Oncorhynchus mykiss) muscle aft er exposure to some metals. Turkish Journal of Veterinary and Animal Science, 36(5), 499–508.

    Google Scholar 

  • Souza, R. B., Moreira-de-Sousa, C., Christofoletti, C. A., Souza, C. P., Fontanetti, C. S. (2017). Impactos de resíduos (vinhaça e biossólido) lançados no cultivo de cana-de-açúcar em representantes da fauna edáfica. In: Fontanetti, C.S. & Bueno, O.C. (Org.). Cana-de-açúcar e seus impactos: uma visão acadêmica (pp. 197-214). Bauru, SP: Canal 6.

  • Taylor, D. A., Thompson, E. L., Nair, S. V., & Raftos, D. A. (2013). Differential effects of metal contamination on the transcript expression of immune-and stress-response genes in the Sydney Rock oyster, Saccostrea glomerata. Environmental Pollution, 178, 65–71.

    Article  CAS  Google Scholar 

  • Tomanek, L. (2008). The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat shock response. Physiological and Biochemical Zoology, 81, 709–717.

    Article  CAS  Google Scholar 

  • Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the eVect of global climate change on species’ biogeographical distribution ranges and metabolic costs. Journal of Experimental Biology, 213, 971–979.

    Article  CAS  Google Scholar 

  • Tungjitwitayakul, J., Tatun, N., Singtripop, T., & Sakurai, S. (2008). Characteristic expression of three heat shock-responsive genes during larval diapause in the bamboo borer Omphisa fuscidentalis. Zoological Science, 25(3), 321–333.

    Article  CAS  Google Scholar 

  • Velazquez, J. M., DiDomenico, B. J., & Lindquist, S. (1980). Intracellular localization of heat shock proteins in Drosophila. Cell, 20(3), 679–689.

    Article  CAS  Google Scholar 

  • Vos, M. J., Hageman, J., Carra, S., & Kampinga, H. H. (2008). Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry, 47(27), 7001–7011.

    Article  CAS  Google Scholar 

  • Wang, L., Yang, C., & Song, L. (2013). The molluscan HSP70s and their expression in hemocytes. International Scientific Journal, 10, 77–83.

    Google Scholar 

  • Wang, Z., Wu, Z., Jian, J., & Lu, Y. (2009). Cloning and expression of heat shock protein 70 gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850) responding to bacterial challenge. Fish & Shellfish Immunology, 26(4), 639–664.

    Article  CAS  Google Scholar 

  • Warchalowska-Sliwa, E., Niklinska, M., Görlich, A., Michailova, P., & Pyza, E. (2005). Heavy metal accumulation, heat shock protein expression and cytogenetic changes in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas. Environmental Pollution, 133, 373–381.

  • Welch, W. (1992). Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiological Reviews, 72, 1063–1081.

    Article  CAS  Google Scholar 

  • Wisniewska, M., Karlberg, T., Lehtiö, L., Johansson, I., Kotenyova, T., Moche, M., & Schüler, H. (2010). Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS One, 5(1), 8625.

    Article  CAS  Google Scholar 

  • Wyatt, S., Mailhos, C., & Latchman, D. S. (1996). Trigeminal ganglion neurons are protected by the heat shock proteins hsp70 and hsp90 from thermal stress but not from programmed cell death following nerve growth factor withdrawal. Brain Research Molecular Brain Research, 39, 52–56.

    Article  CAS  Google Scholar 

  • Yenari, M. A., Giffard, G. R. G., Sapolsky, R. M., & Steinberg, G. K. (1999). The neuroprotective potential of heat shock protein 70 (HSP70). Molecular Medicine Today, 5, 525–531.

    Article  CAS  Google Scholar 

  • Yocum, G. D. (2001). Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology, 47(10), 1139–1145.

    Article  CAS  Google Scholar 

  • Zanger, M., Alberti, G., Kuhn, M., & Kölher, H. R. (1996). The stress-70 protein family in diplopods: induction and characterization. Journal of Comparative Physiology B, 165, 622–627.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and Cnpq (Conselho Nacional de Pesquisas) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Moreira-de-Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira-de-Sousa, C., de Souza, R.B. & Fontanetti, C.S. HSP70 as a Biomarker: an Excellent Tool in Environmental Contamination Analysis—a Review. Water Air Soil Pollut 229, 264 (2018). https://doi.org/10.1007/s11270-018-3920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3920-0

Keywords

Navigation