Skip to main content
Log in

Optimization of Petroleum Refinery Wastewater Treatment by Vertical Flow Constructed Wetlands Under Tropical Conditions: Plant Species Selection and Polishing by a Horizontal Flow Constructed Wetland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Typha latifolia-planted vertical subsurface flow constructed wetlands (VSSF CWs) can be used to treat petroleum refinery wastewater. This study evaluated if the removal efficiency of VSSF CWs can be improved by changing the plant species or coupling horizontal subsurface flow constructed wetlands (HSSF CWs) to the VSSF CW systems. The VSSF CWs had a removal efficiency of 76% for biological oxygen demand (BOD5), 73% for chemical oxygen demand (COD), 70% for ammonium-N (NH4+-N), 68% for nitrate-N (NO3-N), 49% for phosphate (PO43−-P), 68% for total suspended solids (TSS), and 89% for turbidity. The HSSF CWs planted with T. latifolia further reduced the contaminant load of the VSSF CW-treated effluent, giving an additional removal efficiency of 74, 65, 43, 65, 58, 50, and 75% for, respectively, BOD5, COD, NH4+-N, NO3-N, PO43−-P, TSS, and turbidity. The combined hybrid CW showed, therefore, an improved effluent quality with overall removal efficiencies of, respectively, 94% for BOD5, 88% for COD, 84% for NH4+-N, 89% for NO3-N, 78% for PO43−-P, 85% for TSS, and 97% for turbidity. T. latifolia strived well in the VSSF and HSSF CWs, which may have contributed to the high NH4 +-N, NO3-N, and PO43−-P removal efficiencies. T. latifolia-planted VSSF CWs showed a higher contaminant removal efficiency compared to the unplanted VSSF CW. T. latifolia is thus a suitable plant species for treatment of secondary refinery wastewater. Also a T. latifolia-planted hybrid CW is a viable alternative for the treatment of secondary refinery wastewater under the prevailing climatic conditions in Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abidi, S., Kallali, H., Jedidi, N., Bouzaiane, O., & Hassen, A. (2009). Comparative pilot study of the performances of two constructed wetland wastewater treatment hybrid systems. Desalination, 246, 370–377.

    Article  CAS  Google Scholar 

  • Abou-Elela, S. I., & Hellal, M. S. (2012). Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecological Engineering, 47, 209–213. https://doi.org/10.1016/j.ecoleng.2012.06.044.

    Article  Google Scholar 

  • Adomokai, R., & Sheate, W. R. (2004). Community participation and environmental decision-making in the Niger Delta. Environmental Impact Assessment Review, 24, 495–518. https://doi.org/10.1016/j.eiar.2004.01.002.

    Article  Google Scholar 

  • Agbenin, J. O., Danko, M., & Welp, G. (2009). Soil and vegetable compositional relationships of eight potentially toxic metals in urban garden fields from northern Nigeria. Journal of Science, Food and Agriculture, 89(1), 49–54. https://doi.org/10.1002/jsfa.3409.

    Article  CAS  Google Scholar 

  • APHA. (2002). Standard methods for the examination of water and wastewater (20th ed.). Baltimore: American Public Health Association.

    Google Scholar 

  • Ávila, C., Garfí, M., & García, J. (2013). Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions. Ecological Engineering, 43–49. doi:https://doi.org/10.1016/j.ecoleng.2013.09.048

  • Bialowiec, A., Albuquerque, A., & Randerson, P. F. (2014). The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecological Engineering, 67, 89–94. https://doi.org/10.1016/j.ecoleng.2014.03.032.

    Article  Google Scholar 

  • Calheiros, C., Rangel, A., & Castro, P. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Research, 41, 1790–1798. https://doi.org/10.1016/j.watres.2007.01.012.

    Article  CAS  Google Scholar 

  • Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2009). Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresources Technology, 100(13), 3205–3213.

    Article  CAS  Google Scholar 

  • Chung, A., Wu, Y., Tam, N. F., & Wong, M. H. (2008). Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecological Engineering, 32, 81–89. https://doi.org/10.1016/j.ecoleng.2007.09.007.

    Article  Google Scholar 

  • Chyan, J.-M., Senoro, D.-B., Lin, C.-J., Chen, P.-J., & Chen, M.-L. (2013). A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips. International Biodeterioration & Biodegradation, In Press, 1–8. doi:https://doi.org/10.1016/j.ibiod.2013.04.010.

  • Czudar, A., Gyulai, I., Kereszturi, P., Csatari, I., Serra-Paka, S., & Lakatos, G. (2011). Removal of organic materials and plant nutrients in a constructed wetlands for petrochemical wastewater treatment. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii, 21(1), 109–114. Retrieved january 4, 2015, from (www.studiauniversitatis.ro).

  • Dhulap, V. P., Ghorade, I. B., & Patil, S. S. (2014). Seasonal study and its impact on sewage treatment in the angular horizontal subsurface flow constructed wetlands using aquatic macrophytes. International Journal of Research in Engineering & Technology, 2(5), 213–224.

    Google Scholar 

  • Dipu, S., Anju, A., Kumar, V., & Thanga, S. G. (2010). Phytoremediation of dairy effluent by constructed wetland technology using wetland macrophytes. Global Journal of Environmental Research, 4(2).

  • FEPA. (1991). Guidelines and Standards for Environmental Pollution Control in Nigeria. National Environmental Standards-Parts 2 and 3. Lagos, Lagos, Nigeria: Government Press.

  • Haberl, R., Grego, S., Langergraber, G., Kadlec, R. H., Cicalini, A.-R., Dias, S. M., Novais, J. M., Aubert, S., Gerth, A., Thomas, H., & Hebner, A. (2003). Constructed wetlands for the treatment of organic pollutants. Journal of Soils and Sediments, 3(2), 109–124. https://doi.org/10.1007/BF02991077.

    Article  CAS  Google Scholar 

  • Hagahmed, D. E., Gasmelseed, G. A., & Ahmed, S. E. (2014). Multiple loops control of oil biodegradation in constructed wetlands. Journal of Applied and Industrial Sciences, 2(1), 6–13 Retrieved January 4, 2015.

    Google Scholar 

  • Herrera Melián, J., Martín Rodríguez, A. J., Araña, J., González Díaz, O., & González Henríquez, J. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Island. Ecological Engineering, 36, 891–899. https://doi.org/10.1016/j.ecoleng.2010.03.009.

    Article  Google Scholar 

  • Hietala, K. A., & Roane, T. M. (2009). Microbial remediation of metals in soils. In A. Singh, R. Kuhad, & O. Ward (Eds.), Advances in Applied Bioremediation, Book series: Soil Biology (vol. 17, pp. 201–220). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-89621-0_11.

  • Israel, A. U., Obot, I. B., Umoren, S. A., Mkepenie, V., & Ebong, G. A. (2008). Effluents and solid waste analysis in a petrochemical company—a case study of Eleme Petrochemical Company Ltd, Port Harcourt, Nigeria. E-Journal of Chemistry, 5(1), 74–80 Retrieved from http://www.e-journals.net.

    Article  Google Scholar 

  • Isumonah, V. A. (2015). Minority political mobilization in the struggle for resource control in Nigeria. The Extractive Industries and Society, 2, 645–653. https://doi.org/10.1016/j.exis.2015.04.011.

    Article  Google Scholar 

  • Ji, G. D., Sun, T. H., & Ni, J. R. (2007). Surface flow constructed wetland for heavy oil-produced water treatment. Bioresource Technology, 98(2), 436–441.

    Article  CAS  Google Scholar 

  • Kantawanichkul, S., Pilaila, S., Tanapiyawanich, W., & Kamkrua, S. (1999). Wastewater treatment by tropical plants in vertical-flow constructed wetlandss. Water Science and Technology, 40(3), 173–178. https://doi.org/10.1016/S0273-1223(99)00462-X.

    CAS  Google Scholar 

  • Kaseva, M. E. (2004). Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater - a tropical study. Water Research, 38, 681–687. https://doi.org/10.1016/j.watres.2003.10.041.

    Article  CAS  Google Scholar 

  • Katsenovich, Y. P., Hummel-Batista, A., Ravinet, A. J., & Miller, J. F. (2009). Performance evaluation of constructed wetlands in a tropical region. Ecological Engineering, 35, 1529–1537. https://doi.org/10.1016/j.ecoleng.2009.07.003.

    Article  Google Scholar 

  • Kivaisi, A. K. (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing countries; a review. Ecological Engineering, 16, 545–560.

    Article  Google Scholar 

  • Madera-Parra, C. A., Pena-Salamanca, E. J., Pena, M., Rousseau, D. P., & Lens, P. N. (2015). Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. International Journal of Phytoremediation, 17, 16–24. https://doi.org/10.1080/15226514.2013.828014.

    Article  CAS  Google Scholar 

  • Masi, F., & Martinuzzi, N. (2007). Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination, 215, 44–55. https://doi.org/10.1016/j.desal.2006.11.014.

    Article  CAS  Google Scholar 

  • Mena, J., Rodriguez, L., Numez, J., Fermandez, F. J., & Villasenor, J. (2008). Design of horizontal and vertical subsurface flow constructed wetlands treating industrial wastewater. Water Pollution, 555–557. doi:https://doi.org/10.2495/WP080551.

  • Mitchell, C., & McNevin, D. (2001). Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics. Water Research, 1295–1303.

  • Murray-Gulde, C., Heatley, J. E., Karanfil, T., Rodgers Jr., J. R., & Myers, J. E. (2003). Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water. Water Research, 37(3), 705–713.

    Article  CAS  Google Scholar 

  • Mustapha, H. I., van Bruggen, J. J. A., & Lens, P. N. L. (2015). Vertical subsurface flow coonstructed wetlands for polishing secondary Kaduna refinery wastewater in Nigeria. Ecological Engineering, 85, 588–595. https://doi.org/10.1016/j.ecoleng.2015.09.060.

    Article  Google Scholar 

  • NIMET. (2010). Nigeria Meteorological Agency, Nigeria. Kaduna, Kaduna, Nigeria.

  • Nwanyanwu, C. E., & Abu, G. O. (2010). In vitro effects of petroleum refinery wastewater on dehydrogenase activity in marine bacterial strains. Ambi-Agua, Taubatè, 5(2), 21–29. doi:https://doi.org/10.4136/ambi-agua.133.

  • Ojumu, T. V., Bello, O. O., Sonibare, J. A., & Solomon, B. O. (2005). Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria. African Journal of Biotechnology, 4(1), 31–35 Retrieved from http://www.academicjournals.org/AJB.

    CAS  Google Scholar 

  • Peng, J.-F., Wang, B.-Z., & Wang, L. (2005). Multi-stage ponds-wetlands ecosystem for effective wastewater treatment. Journal of Zhejiang University Science, 6B(5), 346–352 Retrieved January 5, 2015, from http://www.zju.edu.cn/jzus.

    Article  CAS  Google Scholar 

  • Saeed, T., & Guangzhi, S. (2012). A review on nitrogen and organics removal mechanisms in subsurfaceflow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448. https://doi.org/10.1016/j.jenvman.2012.08.011.

    Article  CAS  Google Scholar 

  • Saien, J., & Shahrezaei, F. (2012). Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission. International Journal of Photoenergy, 2012, 1–5. https://doi.org/10.1155/2012/703074.

    Article  Google Scholar 

  • Sawaittayothin, V., & Polpraser, C. (2007). Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresource Technology, 98, 565–570. https://doi.org/10.1016/j.biortech.2006.02.002.

    Article  CAS  Google Scholar 

  • Seeger, E. A., Kuschk, P., Fazekas, H., Grathwohl, P., & Kaestner, M. (2011). Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environmental Pollution, 159, 3769–3776. https://doi.org/10.1016/j.envpol.2011.07.019.

    Article  CAS  Google Scholar 

  • Senewo, I. D. (2015). The Ogoni Bill of Rights (OBR): extent of actualization 25 years later? The Extractive Industries and Society(2), 664–670. doi:https://doi.org/10.1016/j.exis.2015.06.004.

  • Sepahi, A. A., Golpasha, I. D., Emami, M., & Nakhoda, A. M. (2008). Isolation and characterization of crude oil degrading Bacillus spp. Iranian Journal Environmental Health, Science and Engineering, 5(3), 149–154.

    Google Scholar 

  • Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R. A., Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(1-2), 93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010.

    Article  CAS  Google Scholar 

  • Sun, G., & Austin, D. (2007). Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere, 68, 1120–1128. https://doi.org/10.1016/j.chemosphere.2007.01.060.

    Article  CAS  Google Scholar 

  • Travaini-Lima, F., & Sipaúba-Tavares, H. L. (2012). Efficiency of a constructed wetland for wastewaters treatment. Acta Limnologica Brasiliensia, 24(3), 255–265.

    Article  Google Scholar 

  • Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25, 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.010.

    Article  Google Scholar 

  • Wenyin, C., Zhanghe, C., Qifan, H., Xiaoyan, W., Cairong, W., Dafeng, C., & Zenglong, L. (2007). Root growth of wetland plants with different root types. Acta Ecologica Sinica, 27(2), 450–458.

    Article  Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20(2), 248–254. https://doi.org/10.1016/j.copbio.2009.02.012.

    Article  CAS  Google Scholar 

  • Yeh, T. Y., & Wu, C. H. (2009). Pollutant removal within hybrid constructed wetland systems in tropical regions. Water Science and Technology , 233–240.

  • Zapater-Pereyra, M., Ilyas, S., van Bruggen, J., & Lens, P. (2015). Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement. Ecological Engineering, 82, 290–300. https://doi.org/10.1016/j.ecoleng.2015.04.097.

    Article  Google Scholar 

  • Zeb, B. S., Mahmood, Q., Jadoon, S., Pervez, A., Irshad, M., Bilal, M., & Bhatti, Z. A. (2013). Combined industrial wastewater treatment in anaerobic bioreactor posttreated in constructed wetland. BioMedical Research International, 2013, 1–8. Retrieved January 4, 2015, from. https://doi.org/10.1155/2013/957853.

    Article  Google Scholar 

  • Zhang, D.-Q., Jinadasa, K., Gersberg, R. M., Liu, Y., Tan, S. K., & Ng, W. J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences, 30, 30–46. https://doi.org/10.1016/j.jes.2014.10.013.

    Article  Google Scholar 

  • Zurita, F., & White, J. R. (2014). Comparative study of three two-stage hybrid ecological wastewater systems for producing high nutrient, reclaimed water for irrigationreuse in developing countries. Water, 6, 213–228. https://doi.org/10.3390/w6020213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Netherlands Fellowship Program (NFP) for financial support (NFP-PhD CF7447/2011). Also, the staff of the UNESCO-IHE laboratory and the staff and management of Kaduna Refinery and Petrochemical Company (Kaduna, Nigeria) are acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassana Ibrahim Mustapha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, H.I., van Bruggen, J.J.A. & Lens, P.N.L. Optimization of Petroleum Refinery Wastewater Treatment by Vertical Flow Constructed Wetlands Under Tropical Conditions: Plant Species Selection and Polishing by a Horizontal Flow Constructed Wetland. Water Air Soil Pollut 229, 137 (2018). https://doi.org/10.1007/s11270-018-3776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3776-3

Keywords

Navigation