Skip to main content
Log in

Use of Hydrodynamic Cavitation for Algae Removal: Effect on the Inactivation of Microalgae Belonging to Genus Scenedesmus

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Excessive algae growth has generated conflicts on the use of water supplies; therefore, the focus on new technologies to remove algae from water bodies is demanding. The aim of the present study was to assess the effect of hydrodynamic cavitation on the inactivation of microalgae belonging to genus Scenedesmus. A laboratory-scale experimental apparatus was built in order to accomplish this goal; it consisted of a Venturi device designed to generate the cavitation phenomenon. Suspended microalgae samples were treated for 60 minutes under different cavitation intensities (cavitation number—Cv—ranging from 0.17 to 0.27). Results evidenced that microalgae decay over time can be modeled through first-order kinetics. The maximum removal efficiency (85%) was recorded at the highest cavitation intensity (Cv = 0.17). The removal efficiency decreased as the cavitation number increased. Hydrodynamic cavitation was effective in inactivating Scenedesmus; it produced irreversible damages to cell morphology such as flotation spines removal, cell wall lesions, cytoplasm extravasation, and cavity formation. Assumingly, hydrodynamic cavitation has great potential to treat eutrophic water bodies. Furthermore, it represents a sustainable removal technique, since it does not produce secondary pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdala Neto, E. F., Aquino, M. D., Ribeiro, J. P., Vidal, C. B., Nascimento, R. F., & Sousa, F. W. (2014). Use of the cavitation hydrodynamics applied to water treatment. Engenharia Sanitaria e Ambiental, 19, 105–112. https://doi.org/10.1590/S1413-41522014000200001.

    Article  CAS  Google Scholar 

  • An, K. G., & Kim, D. S. (2003). Response of reservoir water quality to nutrient inputs from streams and in-lake fishfarms. Water, Air, and Soil Pollution, 149, 27–49.

    Article  CAS  Google Scholar 

  • Arrojo, S., & Benito, Y. (2008). A theoretical study of hydrodynamic cavitation. Ultrasonics Sonochemistry, 15, 203–211. https://doi.org/10.1016/j.ultsonch.2007.03.007.

    Article  CAS  Google Scholar 

  • Bashir, T. A., Soni, A. G., Mahulkar, A. V., & Pandit, A. B. (2011). The CFD driven optimisation of a modified venturi for cavitational activity. Canadian Journal of Chemical Engineering, 89, 1366–1375.

    Article  CAS  Google Scholar 

  • Beghelli, F. G. S., Frascareli, D., Pompêo, M. L. M., & Moschini-Carlos, V. (2016). Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predominance. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-016-2795-1.

  • Beyhan, M., & Kaçıkoç, M. (2014). Evaluation of water quality from the perspective of eutrophication in Lake Eğirdir, Turkey. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-014-1994-x.

  • Capocelli, M., Prisciandaro, M., Lancia, A., & Musmarra, D. (2014). Hydrodynamic cavitation of p-nitrophenol: a theoretical and experimental insight. Chemical Engineering Journal, 254, 1–8.

    Article  CAS  Google Scholar 

  • Chapra, S. C. (1997). Surface water-quality modeling (1st ed.). New York: McGraw-Hill.

    Google Scholar 

  • Chuah, L. F., Yusup, S., Abd Aziz, A. R., Bokhari, A., & Abdullah, M. Z. (2016). Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. Journal of Cleaner Production, 112, 4505–4514.

    Article  CAS  Google Scholar 

  • Gashchin, O. R., & Viten’ko, T. N. (2011). The combined effect of hydrodynamic cavitation, hydrogen peroxide, and silver ions on the Escherichia coli microorganisms. Journal of Water Chemistry and Technology, 33, 266–271.

    Article  Google Scholar 

  • Ghayal, D., Pandit, A. B., & Rathod, V. K. (2013). Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrasonics Sonochemistry, 20, 322–328.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Bhosale, G. S. (2013). Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chemical Engineering and Processing: Process Intensification, 71, 59–69.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44, 60–72.

    Article  CAS  Google Scholar 

  • Gomes de Quevedo, C. M., & da Silva Paganini, W. (2016). Detergents as a source of phosphorus in sewage: the current situation in Brazil. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-015-2700-3.

  • Jyoti, K. K., & Pandit, A. B. (2004). Effect of cavitation on chemical disinfection efficiency. Water Research, 38, 2248–2257.

    Article  CAS  Google Scholar 

  • Li, P., Song, Y., & Yu, S. (2014). Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. Water Research, 62, 241–248.

    Article  CAS  Google Scholar 

  • Lu, X., Tian, C., Pei, H., Hu, W., & Xie, J. (2013). Environmental factors influencing cyanobacteria community structure in Dongping Lake, China. Journal of Environmental Sciences (China), 25, 2196–2206.

    Article  CAS  Google Scholar 

  • Mason, T. J., Joyce, E., Phull, S. S., & Lorimer, J. P. (2003). Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10, 319–323. https://doi.org/10.1016/S1350-4177(03)00102-0.

    Article  CAS  Google Scholar 

  • Mezule, L., Tsyfansky, S., Yakushevich, V., & Juhna, T. (2009). A simple technique for water disinfection with hydrodynamic cavitation: effect on survival of Escherichia coli. Desalination, 248, 152–159. https://doi.org/10.1016/j.desal.2008.05.051.

    Article  CAS  Google Scholar 

  • Musmarra, D., Prisciandaro, M., Capocelli, M., Karatza, D., Iovino, P., Canzano, S., & Lancia, A. (2016). Degradation of ibuprofen by hydrodynamic cavitation: reaction pathways and effect of operational parameters. Ultrasonics Sonochemistry, 29, 76–83. https://doi.org/10.1016/j.ultsonch.2015.09.002.

    Article  CAS  Google Scholar 

  • Raut-Jadhav, S., Saharan, V. K., Pinjari, D., Sonawane, S., Saini, D., & Pandit, A. (2013). Synergetic effect of combination of AOP’s (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide. Journal of Hazardous Materials, 261, 139–147. https://doi.org/10.1016/j.jhazmat.2013.07.012.

    Article  CAS  Google Scholar 

  • Sampath Kumar, K., & Moholkar, V. S. (2007). Conceptual design of a novel hydrodynamic cavitation reactor. Chemical Engineering Science, 62, 2698–2711. https://doi.org/10.1016/j.ces.2007.02.010.

    Article  Google Scholar 

  • Shinozuka, K., Chiwa, K. N., Nagao, S., & Kume, A. (2016). Stream water nitrogen eutrophication during non-irrigated periods in a paddy-dominated agricultural basin in a snowfall area in Japan. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-016-2906-z.

  • Silva, L. H. S. (1999). Fitoplâncton de um reservatório eutrófico (Lago Monte Alegre), Ribeirão Preto, São Paulo, Brasil. Revista Brasileira de Biologia, 59, 281–303.

  • Sipaúba-Tavares, L. H., & Rocha, O. (2003). Produção de plâncton (fitoplâncton e zooplâncton) para alimentação de organismos aquáticos. São Carlos: RIMA.

    Google Scholar 

  • Souza, D. B. S., & Felisberto, S. A. (2014). Comasiella, Desmodesmus, Pectinodesmus e Scenedesmus na Comunidade perifítica em ecossistema lêntico tropical, Brasil Central. Hoehnea, 41, 109–120.

    Article  Google Scholar 

  • Tang, X., Wu, M., Yang, W., Yin, W., Jin, F., Ye, M., Currie, N., & Scholz, M. (2012). Ecological strategy for eutrophication control. Water, Air, and Soil Pollution, 223, 723–737. https://doi.org/10.1007/s11270-011-0897-3.

    Article  CAS  Google Scholar 

  • Von Sperling, M. (2005). Introdução à qualidade das águas e ao tratamento de esgotos. 3ª edição. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, UFMG.

    Google Scholar 

  • Wu, Z., Shen, H., Ondruschka, B., Zhang, Y., Wang, W., & Bremner, D. H. (2012). Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2012.07.034.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Cesar de Souza Inácio Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, M.D., Anhê, A.C.B.M. & de Souza Inácio Gonçalves, J.C. Use of Hydrodynamic Cavitation for Algae Removal: Effect on the Inactivation of Microalgae Belonging to Genus Scenedesmus . Water Air Soil Pollut 228, 443 (2017). https://doi.org/10.1007/s11270-017-3624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3624-x

Keywords

Navigation