Skip to main content
Log in

Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mercury (Hg) is an environmental pollutant which is detrimental to the health of living beings due to the toxicity in its all oxidation states. To control mercury pollution development of low cost, efficient and highly sensitive prototype mercury sensor remains a challenge. In the present work, we have proposed a low-cost prototype device based on silver nanoparticle-impregnated poly(vinyle alcohol) (PVA-Ag-NPs) nanocomposite thin film for mercury detection. The thin film, fabricated through a facile protocol, is shown to be a fast, efficient, and selective sensor for Hg2+ in aqueous medium with a detection limit of 10 ppb. We have utilized the aggregation and amalgamation of Ag-NPs with Hg2+ to develop the low-cost, highly efficient and feasible prototype mercury sensor. In the presence of Hg2+, the yellowish thin film turned into colourless due to the loss of intense surface plasmon resonance (SPR) absorption band of the silver nanoparticles (Ag-NPs) through aggregation and amalgamation with mercury. The developed sensor has high selectivity for Hg2+ ions over a wide range of other competing heavy metal ions, generally present in water of natural sources. The sensor response is found to be linear over the Hg2+ ion concentration regime from 10 ppb to 5 ppm. The developed sensor has shown to determine a trace Hg2+ ions in real water samples. Finally, using the proposed technique, we have developed a simple and inexpensive prototype device for monitoring in field environmental mercury pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  • Annadhasan, M., Muthukumarasamyvel, T., Sankar Babu, V. R., & Rajendiran, N. (2014). ‘Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium’, ACS sustain. Chemical Engineer, 2, 887–896.

    CAS  Google Scholar 

  • Baughman, T. A. (2006). Elemental mercury spills. Environmental Health Perspectives, 114, 147–152.

    Article  Google Scholar 

  • Borah, S. B. D., Bora, T., Baruah, S., & Dutta, J. (2015). Heavy metal ion sensing in water using surface plasmon resonance of metallic nanostructures. Groundwater for Sustainable Development, 1, 1–11.

    Article  Google Scholar 

  • Butler, O. T., Cook, J. M., Harrington, C. F., Hill, S. J., Rieuwerts, J., & Miles, D. L. (2006). Atomic spectrometry update. Environmental analysis. Journal of Analytical Atomic Spectrometry, 21, 217–243.

    Article  CAS  Google Scholar 

  • Chen, L., Yang, L., Li, H., Gao, Y., Deng, D., Wu, Y., & Ma, L.-j. (2011). Tridentate lysine-based fluorescent sensor for Hg (II) in aqueous solution. Inorganic Chemistry, 50, 10028–10032.

    Article  CAS  Google Scholar 

  • De la Cruz-Guzman, M., Aguilar-Aguilar, A., Hernandez-Adame, L., Bañuelos-Frias, A., Medellín-Rodríguez, F. J., & Palestino, G. (2014). A turn-on fluorescent solid-sensor for Hg (II) detection. Nanoscale Research Letters, 9, 1.

    Article  Google Scholar 

  • Eisler, R. (2003). Health risks of gold miners: a synoptic review. Environmental Geochemistry and Health, 25, 325–345.

    Article  CAS  Google Scholar 

  • El-Safty, S. A., & Shenashen, M. (2012). Mercury-ion optical sensors. Trends in Analytical Chemistry, 38, 98–115.

    Article  CAS  Google Scholar 

  • Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S., & Rafipour, A. (2012). Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical, 161, 880–885.

    Article  CAS  Google Scholar 

  • Flores, C. Y., Diaz, C., Rubert, A., Benítez, G. A., Moreno, M. S., Fernández Lorenzo de Mele, M. A., Salvarezza, R. C., Schilardi, P. L., & Vericat, C. (2010). Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid and Interface Science, 350, 402–408.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Reza Fathi, M., Shokrollahi, A., & Shajarat, F. (2006). Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters, 39, 1171–1185.

    Article  CAS  Google Scholar 

  • Glass, G. E., Sorensen, J. A., Schmidt, K. W., Rapp, G. R., Yap, D., & Fraser, D. (1991). Mercury deposition and sources for the upper great lakes region. Water, Air, and Soil Pollution, 56, 235–249.

    Article  CAS  Google Scholar 

  • Guo, L., Xu, Y., Ferhan, A. R., Chen, G., & Kim, D.-H. (2013). Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. Journal of the American Chemical Society, 135, 12338–12345.

    Article  CAS  Google Scholar 

  • Harris, H. H., Pickering, I. J., & George, G. N. (2003). The chemical form of mercury in fish. Science, 301, 1203–1203.

    Article  CAS  Google Scholar 

  • Henglein, A., & Brancewicz, C. (1997). Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury. Chemistry of Materials, 9, 2164–2167.

    Article  CAS  Google Scholar 

  • Kar, P., Maji, T. K., Sarkar, P. K., Sardar, S., & Pal, S. K. (2016). Direct observation of electronic transition-plasmon coupling for enhanced electron injection in dye-sensitized solar cells. RSC Advances, 6, 98753–98760.

    Article  CAS  Google Scholar 

  • Katsikas, L., Gutiérrez, M., & Henglein, A. (1996). Bimetallic colloids: Silver and mercury. The Journal of Physical Chemistry, 100, 11203–11206.

    Article  CAS  Google Scholar 

  • Ke, J., Li, X., Zhao, Q., Hou, Y., & Chen, J. (2014). Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. Scientific Reports, 4, 5624.

    Article  CAS  Google Scholar 

  • Kim, H. N., Ren, W. X., Kim, J. S., & Yoon, J. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews, 41, 3210–3244.

    Article  CAS  Google Scholar 

  • Kim, Y., Johnson, R. C., & Hupp, J. T. (2001). Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Letters, 1, 165–167.

    Article  Google Scholar 

  • Li, L., Gui, L., & Li, W. (2015). A colorimetric silver nanoparticle-based assay for Hg (II) using lysine as a particle-linking reagent. Microchimica Acta, 182, 1977–1981.

    Article  CAS  Google Scholar 

  • Li, M., Gou, H., Al-Ogaidi, I., & Wu, N. (2013). ‘Nanostructured sensors for detection of heavy metals: a review’, ACS sustain. Chemical Engineer, 1, 713–723.

    Google Scholar 

  • Li, M., Wang, Q., Shi, X., Hornak, L. A., & Wu, N. (2011). Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Analytical Chemistry, 83, 7061–7065.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhang, Z., Xu, Y., Ma, M., Chen, B., Wei, L., & Xiao, L. (2016). A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta, 161, 476–481.

    Article  CAS  Google Scholar 

  • Miller, J. R., Rowland, J., Lechler, P. J., Desilets, M., & Hsu, L.-C. (1996). Dispersal of mercury-contaminated sediments by geomorphic processes, Sixmile canyon, Nevada, USA: implications to site characterization and remediation of fluvial environments. Water, Air, and Soil Pollution, 86, 373–388.

    Article  CAS  Google Scholar 

  • Nolan, E. M., & Lippard, S. J. (2008). Tools and tactics for the optical detection of mercuric ion. Chemical Reviews, 108, 3443–3480.

    Article  CAS  Google Scholar 

  • Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139, 4855–4861.

    Article  CAS  Google Scholar 

  • Pepi, M., Reniero, D., Baldi, F., & Barbieri, P. (2006). A comparison of MER::LUX whole cell biosensors and moss, a bioindicator, for estimating mercury pollution. Water, Air, and Soil Pollution, 173, 163–175.

    Article  CAS  Google Scholar 

  • Polley, N., Sarkar, P. K., Chakrabarti, S., Lemmens, P., & Pal, S. K. (2016). DNA biomaterial based fiber optic sensor: characterization and application for monitoring in situ mercury pollution. Chemistry Select, 1, 2916–2922.

    CAS  Google Scholar 

  • Ramesh, G. V., & Radhakrishnan, T. P. (2011). A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film. ACS Applied Materials & Interfaces, 3, 988–994.

    Article  CAS  Google Scholar 

  • Ravi, S. S., Christena, L. R., SaiSubramanian, N., & Anthony, S. P. (2013). Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst, 138, 4370–4377.

    Article  CAS  Google Scholar 

  • Rex, M., Hernandez, F. E., & Campiglia, A. D. (2006). Pushing the limits of mercury sensors with gold nanorods. Analytical Chemistry, 78, 445–451.

    Article  CAS  Google Scholar 

  • Rodriguez-Leon, E., Iniguez-Palomares, R., Navarro, R., Herrera-Urbina, R., Tanori, J., Iniguez-Palomares, C., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex Hymenosepalus extracts). Nanoscale Research Letters, 8, 318.

    Article  Google Scholar 

  • Sarkar, P. K., Polley, N., Chakrabarti, S., Lemmens, P., & Pal, S. K. (2016). Nanosurface energy transfer based highly selective and ultrasensitive “turn on” fluorescence mercury sensor. ACS Sensors, 1, 789–797.

    Article  CAS  Google Scholar 

  • Somé, I. T., Sakira, A. K., Mertens, D., Ronkart, S. N., & Kauffmann, J.-M. (2016). Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode. Talanta, 152, 335–340.

    Article  Google Scholar 

  • Sugunan, A., Thanachayanont, C., Dutta, J., & Hilborn, J. G. (2005). Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Science and Technology of Advanced Materials, 6, 335–340.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18, 149–175.

    Article  CAS  Google Scholar 

  • Thompson, D. G., Stokes, R. J., Martin, R. W., Lundahl, P. J., Faulds, K., & Graham, D. (2008). Synthesis of unique nanostructures with novel optical properties using oligonucleotide mixed–metal nanoparticle conjugates. Small, 4, 1054–1057.

    Article  CAS  Google Scholar 

  • Trieu, K., Heider, E. C., Brooks, S. C., Barbosa Jr., F., & Campiglia, A. D. (2014). Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis. Talanta, 128, 196–202.

    Article  CAS  Google Scholar 

  • Wallschläger, D., Kock, H. H., Schroeder, W. H., Lindberg, S. E., Ebinghaus, R., & Wilken, R.-D. (2002). Estimating gaseous mercury emissions from contaminated floodplain soils to the atmosphere with simple field measurement techniques. Water, Air, and Soil Pollution, 135, 39–54.

    Article  Google Scholar 

  • Wan, Y., Niu, W., Behof, W. J., Wang, Y., Boyle, P., & Gorman, C. B. (2009). Aminoisoquinolines as colorimetric hg 2+ sensors: the importance of molecular structure and sacrificial base. Tetrahedron, 65, 4293–4297.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, Y., Jin, J., & Yang, R. (2008b). Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Analytical Chemistry, 80, 9021–9028.

    Article  CAS  Google Scholar 

  • Wang, N., Lin, M., Dai, H., & Ma, H. (2016). Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosensors & Bioelectronics, 79, 320–326.

    Article  CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131, 323–336.

    Article  Google Scholar 

  • Wang, Y., Yang, F., & Yang, X. (2010). Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Applied Materials & Interfaces, 2, 339–342.

    Article  CAS  Google Scholar 

  • Wang, Z., Heon Lee, J. & Lu, Y. (2008a). Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications, 6005–6007.

  • Wanichacheva, N., Hanmeng, O., Kraithong, S., & Sukrat, K. (2014). Dual optical Hg2+−selective sensing through FRET system of fluorescein and rhodamine B fluorophores. Journal of Photochemistry and Photobiology A, 278, 75–81.

    Article  CAS  Google Scholar 

  • Wu, L. P., Zhao, H. W., Qin, Z. H., Zhao, X. Y. & Pu, W. D. (2012). Highly selective Hg (II) ion detection based on linear blue-shift of the maximum absorption wavelength of silver nanoparticles. Journal of Analytical Methods in Chemistry. doi:10.1155/2012/856947.

  • Yan, Z., Yuen, M.-F., Hu, L., Sun, P., & Lee, C.-S. (2014). Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Advances, 4, 48373–48388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. K. Sarkar is thankful to UGC (India) for providing the fellowship under UGC-RGNF scheme and N. Polley acknowledges DST (India) for INSPIRE Fellowship. We are thankful to DST (India) for Financial Grants DST-TM-SERI-FR-117, EMR/2016/004698 and DAE (India) for Financial Grant 2013/37P/73/BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P.K., Halder, A., Polley, N. et al. Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring. Water Air Soil Pollut 228, 314 (2017). https://doi.org/10.1007/s11270-017-3479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3479-1

Keywords

Navigation