Skip to main content
Log in

Use of Viability-Based Methods for Improved Detection of Recent Fecal Contamination in a Microbial Source Tracking Study Near Tijuana, Mexico

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Current microbial source tracking methods heavily rely on the use of quantitative PCR (qPCR) assays to differentiate human and non-human sources of fecal contamination. However, traditional qPCR measures DNA from viable, viable but not culturable (VBNC), and dead cells, which may confound the use of this technique for detecting recent fecal contamination from waters receiving treated sewage effluent. In this study, fecal indicator bacteria (FIB), six host-associated markers, and two viability-based methods for rapid detection and assessment of fecal contamination were used in a microbial source tracking study to identify sources impairing water quality and sediments within the San Antonio de los Buenos watershed in Tijuana, Mexico. Horse- and gull-associated markers were detected in 4 and 8% of samples tested, respectively. The human- and dog-associated markers were positive in 74 and 63% of watershed samples and 92 and 75% of storm drain samples, respectively. Propidium monoazide (PMA) successfully inhibited amplification of DNA from dead cells in environmental creek waters that receive large volumes of treated wastewater effluent. Accordingly, PMA-qPCR measurements were more comparable to measurements made by culture-based methods (IDEXX). The covalently linked immunomagnetic separation/adenosine triphosphate (Cov-IMS/ATP) method showed a strong linear relationship to culture methods when compared to measurements made by the qPCR Entero1a assay. Both the PMA-qPCR and the Cov-IMS/ATP methods show promise for improved assessment of water quality and recent fecal contamination in sewage impacted waters, including areas receiving discharge from wastewater treatment plants, where measurement by qPCR does not effectively differentiate between DNA from live and dead cells. This study serves as an important positive control for non-point source pollution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bae, S., & Wuertz, S. (2009a). Discrimination of viable and dead fecal bacteroidales bacteria by quantitative PCR with propidium monoazide. Applied and Environmental Microbiology, 75, 2940–2944.

    Article  CAS  Google Scholar 

  • Bae, S., & Wuertz, S. (2009b). Rapid decay of host-specific Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Research, 43, 4850–4859.

    Article  CAS  Google Scholar 

  • Bernhard, A. E., & Field, K. G. (2000a). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S Ribosomal DNA genetic markers from fecal anaerobes. Applied and Environmental Microbiology, 66, 1587–1594.

    Article  CAS  Google Scholar 

  • Bernhard, A. E., & Field, K. G. (2000b). A PCR assay to discriminate human and ruminant Feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Applied and Environmental Microbiology, 66, 4571–4574.

    Article  CAS  Google Scholar 

  • Boehm, A. B., Van De Werfhorst, L. C., Griffith, J. F., Holden, P. A., Jay, J. A., Shanks, O. C., et al. (2013). Performance of forty-three microbial source tracking methods: a twenty-seven lab evaluation study. Water Research, 47, 6812–6828.

    Article  CAS  Google Scholar 

  • Border Environment Cooperation Commission (BECC), (2009). Environmental Assessment (EA) for the Expansion of the Water Distribution and Wastewater Collection System for Unserved Areas in Tijuana, B.C. Environmental Information Document. US Environmental Protection Agency.

  • Border Environment Cooperation Commission (BECC), 2009a. Expansion of the Water and Wastewater Systems in Tijuana and Playas de Rosarito, Baja California. Board Document DB 2009–15. July 2009. BECC Certification Document.

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  Google Scholar 

  • Bushon, R. N., Brady, A. M., Likirdopulos, C. A., & Cireddu, J. V. (2009). Rapid detection of Escherichia coli and enterococci in recreational water using immunomagnetic separation/adenosine triphosphate technique. Journal of Applied Microbiology, 106, 432–441.

    Article  CAS  Google Scholar 

  • Cabelli, V. J., Dufour, A. P., McCabe, L. J., & Levin, M. A. (1982). Swimming-associated gastroenteritis and water quality. American Journal of Epidemiology, 115(4), 606–616.

    Article  CAS  Google Scholar 

  • Cao, Y., Griffith, J. F., Dorevitch, S., & Weisberg, S. B. (2012). Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters. Journal of Applied Microbiology, 113, 66–75.

    Article  CAS  Google Scholar 

  • Dick, L. K., Bernhard, A. E., Brodeur, T. J., Santo Domingo, J. W., Simpson, J. M., Walters, S. P., & Field, K. G. (2005). Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Applied and Environmental Microbiology, 71(6), 3184–3191.

    Article  CAS  Google Scholar 

  • Ebdon, J., Muniesa, M., & Taylor, H. (2007). The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment. Water Research, 41, 3683–3690.

    Article  CAS  Google Scholar 

  • Ebentier, D. L., Hanley, K. T., Cao, Y., Badgley, B. D., Boehm, A. B., Ervin, J. S., et al. (2013). Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Research, 47, 6839–6848.

    Article  CAS  Google Scholar 

  • Ferguson, D. M., Griffith, J. M., McGee, C. D., Weisberg, S. B., & Hagedorn, C. (2013). Comparison of Enterococcus species diversity in marine water and wastewater using Enterolert and EPA Method 1600. Journal of environmental and public health, Article ID, 848049. 6 pages.

  • Fleisher, J. M., Kay, D., Salmon, R. L., Jones, F., Wyer, M. D., & Godfree, A. F. (1996). Marine waters contaminated with domestic sewage: nonenteric illnesses associated with bather exposure in the United Kingdom. American Journal of Public Health, 86(9), 1228–1234.

    Article  CAS  Google Scholar 

  • Flood, C., Ufnar, J., Wang, S., Johnson, J., Carr, M., & Ellender, R. (2011). Lack of correlation between enterococcal counts and the presence of human specific fecal markers in Mississippi creek and coastal waters. Water Research, 45, 872–878.

    Article  CAS  Google Scholar 

  • Gawler, A. H., Beecher, J. E., Brandaõ, J., Carroll, N. M., Falcao, L., Gourmelon, M., et al. (2007). Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of fecal pollution in Atlantic Rim countries of the European Union. Water Research, 41, 3780–3784.

    Article  CAS  Google Scholar 

  • Gerba, C. (2000). Indicator microorganisms. In R. Maier, I. Pepper, & C. Gerba (Eds.), Environmental Microbiology (pp. 491–503). California: Academic.

    Google Scholar 

  • Griffith, J. F., Weisberg, S., & McGee, C. (2003). Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. Journal of Water and Health, 1, 141–151.

    Google Scholar 

  • Harwood, V. J., Staley, C., Badgley, B. D., Borges, K., & Korajkic, A. (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38, 1–40.

    Article  CAS  Google Scholar 

  • Haugland, R. A., Varma, M., Sivaganesan, M., Kelty, C., Peed, L., & Shanks, O. C. (2010). Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 33, 348–357.

    Article  CAS  Google Scholar 

  • He, J. W. & Jiang, S. (2005). Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Applied and Environmental Microbiology, 71, 2250–2255.

  • Kay, D., Fleisher, J. M., & Salmon, R. L. (1994). Predicting likelihood of gastroenteritis from sea bathing: results from randomised exposure. Lancet, 344, 905–909.

    Article  CAS  Google Scholar 

  • Kildare, B. J., Leutenegger, C. M., McSwain, B. S., Bambic, D. G., Rajal, V. B., & Wuertz, S. (2007). 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Research, 41, 3701–3715.

    Article  CAS  Google Scholar 

  • Layton, B., Cao, Y., Ebentier, D. L., Hanley, K. T., Van De Werfhorst, L. C., Wang, D., et al. (2013). Performance of human fecal-associated PCR based assays: an international source identification method evaluation. Water Research, 47, 6897–6908.

    Article  CAS  Google Scholar 

  • Lee, J. Y., & Deininger, R. A. (2004). Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence. Luminescence, 19, 31–36.

    Article  CAS  Google Scholar 

  • Lee, C. M., Lin, T. Y., Lin, C. C., Kohbodi, G. A., Bhattl, A., Lee, R., et al. (2006). Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Research, 40, 2593–2602.

    Article  CAS  Google Scholar 

  • Lee, C. M., Griffith, J. F., Kaiser, W., & Jay, J. A. (2010). Covalently linked immunomagnetic separation/adenosine triphosphate technique (Cov-IMS/ATP) enables rapid, in-field detection and quantification of Escherichia coli and Enterococcus spp. in freshwater and marine environments. Journal of Applied Microbiology, 109, 324–333.

    CAS  Google Scholar 

  • Lemarchand, K., & Lebaron, P. (2003). Occurrence of Salmonella spp. And Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiology Letters, 218, 203–209.

    Article  CAS  Google Scholar 

  • Litton, R., Ahn, J., Sercu, B., Holden, P., Sedlak, D., & Grant, S. (2010). Evaluation of chemical, molecular, and traditional markers of fecal contamination in an effluent dominated urban stream. Environmental Science & Technology, 44, 7369–7375.

    Article  CAS  Google Scholar 

  • Mika, K. B., Imamura, G., Chang, C., Conway, V., Fernandez, G., & Griffith, J. F. (2009). Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources. Journal of Applied Microbiology, 107, 72–84.

    Article  CAS  Google Scholar 

  • Mika, K. B., Ginsburg, D. W., Lee, C. M., Thulsiraj, V., & Jay, J. A. (2014). Fecal indicator bacteria levels do not correspond with incidence of human-associated HF183 Bacteroides 16S rRNA genetic marker in two urban southern California watersheds. Water Air and Soil Pollution., 225, 1960–1970.

    Article  Google Scholar 

  • Nielsen, K. M., Johnsen, P. J., Bensasson, D., & Daffonchio, D. (2007). Release and persistence of extracellular DNA in the environment. Environ. Biosafety Res., 6, 37–53.

    Article  CAS  Google Scholar 

  • Noble, R. T., Griffith, J. F., Blackwood, A. D., Fuhrman, J. A., Gregory, J. B., Hernandez, X., Liang, X., Bera, A. A., & Schiff, K. (2006). Multitiered approach using quantitative PCR to track sources of fecal pollution affecting Santa Monica Bay, California. Applied and Environmental Microbiology, 72(2), 1604–1612.

    Article  CAS  Google Scholar 

  • Nocker, A., Cheung, C., & Camper, A. (2006). Comparison of propidium monoazide and ethidium monoazide for differentiation of live vs dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67, 310–320.

    Article  CAS  Google Scholar 

  • Nocker, A., Sossa-Fernandez, P., Bun, M., & Camper, A. (2007). Use of propidium monoazide for live/dead distinctions in microbial ecology. Applied and Environmental Microbiology, 73, 5111–5117.

    Article  CAS  Google Scholar 

  • Orozco-Borbon, V., Rico-Mora, R., Weisberg, S., Noble, R., Dorsey, J., Leecaster, M., et al. (2006). Bacteriological water quality along the Tijuana-Ensenada, Baja California, Mexico shoreline. Marine Pollution Bulletin, 52, 1190–1196.

    Article  CAS  Google Scholar 

  • Riedel, T. E., Thulsiraj, V., Zimmer-Faust, A. G., Dagit, R., Krug, J., Hanley, K. T., Adamek, K., Ebentier, D. L., Torres, R., Cobian, U., Peterson, S., & Jay, J. A. (2015). Long-term monitoring of molecular markers can distinguish different seasonal patterns of fecal indicating bacteria sources. Water Research, 71, 227–243.

    Article  CAS  Google Scholar 

  • Santoro, A. E., & Boehm, A. B. (2007). Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach relationship to waves, tides and traditional indicators. Environmental Microbiology, 9, 2038–2049.

    Article  CAS  Google Scholar 

  • Sassourbre, L. M., Love, D. C., Silverman, A. I., Nelson, K. L., & Boehm, A. B. (2012a). Comparison of enterovirus and adenovirus concentration and enumeration methods in seawater from Southern California, USA and Baja Malibu, Mexico. Journal of Water and Health, 3, 419–430.

    Article  Google Scholar 

  • Sassourbre, L. M., Nelson, K. L., & Boehm, A. B. (2012b). Mechanisms for photoinactivation of seawater. Applied and Environmental Microbiology, 78, 7776–7785.

    Article  Google Scholar 

  • Seurinck, S., Defoirdt, T., Verstraete, W., & Sicilliano, S. D. (2005). Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environmental Microbiology, 7, 249–259.

    Article  CAS  Google Scholar 

  • Shibata, T., Solo-Gabriele, H. M., Sinigalliano, C. D., Gidley, M. L., Plano, L. R. W., Fleisher, J. M., et al. (2010). Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environmental Science & Technology, 44, 8175–8181.

    Article  CAS  Google Scholar 

  • Sinigalliano, C. D., Ervin, J. S., Van De Werfhorst, L. C., Wang, D., Wanless, D., & Bartkowiak, J. (2013). Multi-laboratory assessment on the performance of PCR assays targeting Catellicoccus marimammalium for microbial source tracking of coastal birds. Water Research, 47, 6883–6896.

    Article  CAS  Google Scholar 

  • Sung Yung, K., Terrill, E., & Cornuelle, B. (2009). Assessing coastal plumes in a region of multiple discharges; the U.S.-Mexico border. Environmental Science & Technology, 43, 7450–7457.

    Article  Google Scholar 

  • Terrill, E., Pyle, R., Winslow, K., Kim, S. Y., Hazard, L., Otero, M., Jones, B., & Furhman, J. (2009). Coastal Observations and Monitoring in South Bay San Diego IBWC/Surfrider Consent Decree. San Diego: CH2M Hill.

    Google Scholar 

  • USEPA (2010) Method A. Enterococci in Water by Taqman® Quantitative Polymerase Chain Reaction (qPCR) Assay.

  • Varma, M., Field, R., Stinson, M., Rukovets, B., Wymer, L., & Haugland, R. (2009). Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater. Water Research, 43, 4790–4801.

    Article  CAS  Google Scholar 

  • Wade, T. J., Calderon, R. L., Sams, E., Beach, M., Brenner, K. P., Williams, A. H., et al. (2006). Rapidly measured indicators of recreational water quality are predictive of swimming-assocaited gastrointestinal illness. Environmental Health Perspectives, 114, 24–28.

    Article  Google Scholar 

  • Wade, T. J., Sams, E., Brenner, K. P., Haugland, R., Chem, E., Beach, M., Wymer, L., Rankin, C. C., Love, D., Li, Q., Noble, R., & Dufour, A. P. (2010). Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environmental Health, 9, 66.

    Article  Google Scholar 

  • Zimmer-Faust, A. G., Thulsiraj, V., Ferguson, D., & Jay, J. A. (2014). Performance and specificity of the covalently linked immunomagnetic-ATP method for rapid detection and enumeration of enterococci in coastal environments. Applied and Environmental Microbiology, 80(9), 2705–2714.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Octavio Tellez Hirsch, Benjamin McCue of WiLDCOAST (Costasalvaje), Margarita Diaz of Proyecto Fronterizo de Educación Ambiental A.C, and the Homeowners Association of San Antonio Del Mar for their support in providing knowledge of wastewater treatment in the area and access to the field site. A special thanks to Dr. Christine M. Lee and the many undergraduates who helped assist in sample collection and processing. This work was funded by the UC MEXUS Grants for Dissertation Research and by the California State Water Resources Control Board Clean Beach Initiative Grant through the Source Identification Protocol Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Jay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thulsiraj, V., Zimmer-Faust, A.G. & Jay, J.A. Use of Viability-Based Methods for Improved Detection of Recent Fecal Contamination in a Microbial Source Tracking Study Near Tijuana, Mexico. Water Air Soil Pollut 228, 63 (2017). https://doi.org/10.1007/s11270-016-3204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3204-5

Keywords

Navigation