Skip to main content
Log in

Acid Blue 161: Decolorization and Toxicity Analysis After Microbiological Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

ABSTRACT

Concern for the incorrect disposal of potentially toxic substances in aquatic environments is growing due to adverse effects caused to the organisms exposed to them. Synthetic azo dyes are part of this group of substances, and increasingly, researchers seek alternatives able to degrade and remove these molecules to prevent their discharge to the environment. Thus, this study sought to examine the dye removal capacity Acid Blue 161 by biosorption and biodegradation from filamentous fungi Aspergillus niger and Aspergillus terreus and perform acute toxicity tests with Lactuca sativa organisms and Artemia salina. The biossorption treatment resulted in 46 % decolorization of the solutions and reducing the toxicity of the means for both organisms tested. While the biodegradation study resulted in 84 % decolorization at the end of treatment. The resulting solution of such treatment did not show toxicity to the larvae of A. salina and the L. sativa seeds were increased by 40 % in the inhibition of root growth of seedlings. FTIR studies indicated the presence of amines in the middle, which justifies the increase in toxicity to seedlings, since these compounds are potentially toxic to a variety of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al, G., Özdemir, U., & Aksoy, Ö. (2013) Cytotoxic effects of Reactive Blue 33 on Allium cepa determined using Taguchi’s L8 orthogonal array Ecotoxicology and Environmental Safety, 98, 36-40.

  • Amin, F., Talpur, F. N., Balouch, A., Surhio, M. A., & Bhutto, M. A. (2015). Biosorption of fluoride from aqueous solution by white-rot fungus Pleurotus eryngii ATCC 90888. Environmental Nanotechnology Monitoring & Management, 3, 30–37.

    Article  Google Scholar 

  • Arjunan, V., Subramanian, S., & Mohan, S. (2004). FTIR and FTR spectral studies of 2-amino-6-bromo-3-formylchromone. Spectrochimica Acta A, 60, 995–1000.

    Article  CAS  Google Scholar 

  • Athalathil, S., Font, J., Fortuny, A., Stüber, F., Bengoa, C., & Fabregat, A. (2015). New sludge-based carbonaceous materials impregnated with different metals for anaerobic azo-dye reduction. Journal Environmental Chemical Engineering, 3, 104–112.

    Article  CAS  Google Scholar 

  • Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2010). Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260, 137–146.

    Article  CAS  Google Scholar 

  • Ayed, L., Mahdhi, A., Cheref, A., & Bakhrouf, A. (2011). Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination, 274, 272–277.

    Article  CAS  Google Scholar 

  • Babu, S. S., Mohandass, C., Vijayaraj, A. S., & Dhale, A. M. (2015). Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)—a microcosm approach. Ecotoxicology and Environmental Safety, 144, 52–60.

    Article  Google Scholar 

  • Baêta, B. E. L., Lima, D. R. S., Silva, S. Q., & Aquino, S. F. (2015). Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye. Chemical Engineering Journal, 259, 936–944.

    Article  Google Scholar 

  • Bedekar, P. A., Saratale, R. G., Saratale, G. D., & Govindwar, S. P. (2014). Development of low cost upflow columm bioreactor for degradation and detoxification of blue HERD and textile effluent by Lysinibacillus sp. RGS immobilized on Loofa. International Biodeterioration & Biodegradation, 96, 112–120.

    Article  Google Scholar 

  • Couto, S. R. (2009). Dye removal by immobilised fungi. Biotechnology Advances, 27, 227–235.

    Article  Google Scholar 

  • Du, L. N., Wang, B., Li, G., Wang, S., Crowley, D. E., & Zhao, Y. H. (2012). Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. Journal of Hazardous Materials, 205–206, 47–54.

    Article  Google Scholar 

  • Fanchiang, J. M., & Tseng, D. H. (2009). Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation. Chemosphere, 77, 214–221.

    Article  CAS  Google Scholar 

  • Guendouz, S., Khellaf, N., Zerdaoui, M., & Ouchefoun, M. (2013). Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment. Environmental Science and Pollution Research, 20, 3822–3829.

    Article  CAS  Google Scholar 

  • Horvat, A. J. M., Petrovic, M., Babics, S., Pavlovic, D. M., Asperger, D., Pelko, S., Mance, A. D., & Kastelan-Macan, M. (2012). Analysis, occurrence and fate anthelmintcs and their transformation products in the environment. Trends in Analytical Chemistry, 31, 61–24.

    Article  CAS  Google Scholar 

  • Imran, M., Arshad, M., Negm, F., Khalid, A., Shaharoona, B., Hussain, S., Nadeem, S. M., & Crowley, D. E. (2016). Yeast extract promote decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp, strain IFN 4. Ecotoxicology and Environmental Safety, 124, 42–49.

    Article  CAS  Google Scholar 

  • Isik, M., & Sponza, D. T. (2007). Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations. Enzyme and Microbial Technology, 40, 934–939.

    Article  CAS  Google Scholar 

  • Kabbout, R., & Taha, S. (2014). Biodecolorization of textile dye effluent by biosorption of fungal biomass materials. Physics Procedia, 55, 437–444.

    Article  CAS  Google Scholar 

  • Marcanti-Contato, I., Corso, C. R., & Oliveira, J. E. (1997). Induction of physical paramorfogenesis in Aspergillus sp. Revista de Microbiologia, 28, 65–67.

    Google Scholar 

  • Olukanni, O. D., Osuntoki, A. A., Kalyani, D. C., Gbenle, G. O., & Govindwar, S. P. (2010). Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAB. Journal of Hazardous Materials, 184, 290–298.

    Article  CAS  Google Scholar 

  • Pakshirajan, K., Sivasankar, A., & Sahoo, N. K. (2011). Decolourization of synthetic wastewater containing azo dyes by immobilized Phanerochaete chrysosporium in a continuously operated RBC reactor. Applied Microbiology and Biotechnology, 89, 1223–1232.

    Article  CAS  Google Scholar 

  • Rathod, J., & Archana, G. (2013). Molecular fingerprinting of bacterial communities in enriched azo dye (Reactive Violet 5R) decolorising native acclimatised bacterial consortia. Bioresourse Technology, 142, 436–444.

    Article  CAS  Google Scholar 

  • Sobrero, M. S., & Ronco, A. (2008). Ensayo de toxidad aguda con semillas de lechuga Lactuca sativa L. Ensayos toxicológicos pra la evalucion de susbstancias químicas en agua y suelo, 1, 55–68.

    Google Scholar 

Download references

Acknowledgments

Support from the Brazilian fostering agencies FAPESP/Brazil, CAPES/Brazil, CNPq/Brazil and Fundunesp/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Janaina Rodrigues de Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, E.J.R., Corso, C.R. Acid Blue 161: Decolorization and Toxicity Analysis After Microbiological Treatment. Water Air Soil Pollut 227, 468 (2016). https://doi.org/10.1007/s11270-016-3042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3042-5

Keywords

Navigation