Skip to main content
Log in

Cadmium Uptake and Translocation of Tomato in Response to Simulated Irrigation Water Containing Elevated Concentrations of Cadmium and Zinc in Clayey Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Accumulation of metals in cultivated crops is considered one of the primary constraints to irrigated agriculture. A greenhouse pot experiment was carried out to study the effects of irrigation with elevated cadmium (Cd) and a combination of cadmium and zinc (Zn) levels on Cd uptake, translocation, and productivity of tomato (Solanum lycopersicum) plants. Tomato seedlings were grown in 3-kg pots irrigated for three months until maturity. Treatments were as follows: pots irrigated with fresh water containing Cd concentrations (0, 0.01, 0.04, 0.16, 0.64, 2.54 mg L−1), and pots irrigated with a combination of Cd + Zn concentrations (0 + 0, 0.01 + 2, 0.04 + 8, 0.16 + 32, 0.64 + 128, and 2.56 + 256 mg L−1). Cadmium and Zn concentration in soil and plant parts (root, shoot, and fruit) increased with increasing metal dose in irrigation water. Results also showed that Cd accumulation in the fruit was much lower than in the shoot indicating lower Cd transfer from soil to the fruit. Tomato biomass was not affected by treatments even at the highest metal dose. The uptake of Cd in tomato fruit ranged from 0.5 to 2.0 and from 0.3 to 1 mg kg−1, in single and combination treatments, respectively. Cadmium in fruit exceeded the permissible limit at 0.04 and 0.16 + 32 mg L−1 in Cd and Cd + Zn treatments, respectively. Therefore these levels could be considered as a threshold for tomato cultivation in clayey soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Bioavailability of trace metals. In D. C. Adriano (Ed.), Trace elements in the terrestrial environment (pp. 61–89). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The zccumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. The Science of the Total Environment, 91, 223–236.

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (FAO Irrigation and Drainage Paper 29, p. 174). Rome: FAO.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Balen, B., Tkalec, M., Sikić, S., Tolić, S., Cvjetko, P., Pavlica, M., & Vidaković-Cifrek, Z. (2011). Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology, 20(4), 815–26.

    Article  CAS  Google Scholar 

  • Begerow, J., Crößmann, G., Ewers, U., & Finck, M. (2008). Standards and regulations regarding metals and their compounds in environmental materials, drinking water, food, feeding-stuff, consumer products, and other materials. In E. Merian, M. Anke, M. Ihnat, & M. Steoppler (Eds.), Elements and their compounds in the environment (pp. 1498–1524). Weinheim: Wiley-VCH Verlag GmbH.

    Google Scholar 

  • Cakmak, I., Welch, R. M., Hart, J., Norvell, W. A., Ozturk, L., & Kochian, L. V. (2000). Uptake and retranslocation of leaf-applied cadmium (Cd-109) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany, 51, 221–226.

    Article  CAS  Google Scholar 

  • Chander, K., Hartmann, G., Joergensen, R. G., Khan, K. S., & Lamersdorf, N. (2008). Comparison of three methods for measuring heavy metals in soils contaminated by different sources. Archives of Agronomy and Soil Science, 54, 413–422.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Ryan, J. A., Li, Y. M., & Brown, S. L. (1999). Soil cadmium as a threat to human health. In M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in soils and plants (pp. 219–256). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Cherif, J., Mediouni, C., Ammar, W. B., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Sciences, 23(5), 837–844.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337(1–3), 175–182.

    Article  CAS  Google Scholar 

  • Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qui, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environmental International, 30(6), 785–791.

    Article  CAS  Google Scholar 

  • Devi, M., Thomas, D. A., Barber, J. T., & Fingerman, M. (1996). Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicology and Environmental Safety, 33(1), 38–43.

    Article  CAS  Google Scholar 

  • Dong, J., Wu, F. B., & Zhang, G. P. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon Esculentum). Chemosphere, 64, 1659–1666.

    Article  CAS  Google Scholar 

  • Duarte, B., Delgado, M., & Caçador, I. (2007). The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere, 69, 836–840.

    Article  CAS  Google Scholar 

  • FAO/WHO (2001). Codex Alimentarius Commission Food Additives and Contaminants. Joint FAO/WHO Food Standards Program, ALINORM 01/12A:1–289.

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. A., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & C. G. Topp (Eds.), Methods of soil analysis: part 4—physical methods (pp. 255–293). Madison: ASA and SSSA.

    Google Scholar 

  • Grant, C. A., & Bailey, L. D. (1997). Effects of phosphorous and zinc fertilizer management on cadmium accumulation in flaxseed. Journal of the Science of Food and Agriculture, 73, 307–314.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    Article  CAS  Google Scholar 

  • Hart, J. J., Welch, R. M., Norvell, W. A., & Kochian, L. V. (2002). Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum, 116, 73–78.

    Article  CAS  Google Scholar 

  • Hassan, M. J., Zhang, G., Wu, F., Wei, K., & Chonghua, C. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. Journal of Plant Nutrition and Soil Science, 168, 256–261.

    Article  Google Scholar 

  • Jinadasa, K., Milham, C., Hawkins, P., Cornish, P., Williams, Kaldor, C., & Conroy, J. (1997). Survey of cadmium levels in vegetables and soils of Greater Sydney. Australian Journal of Environment, 26, 924–933.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements of group 12 (Previously group IIb). In A. Kabata-Pendias, & A. B. Mukherjee (Eds.). Trace elements from soil to human (pp. 283-319). Springer Berlin Heidelberg.

  • Kim, S. J., Chang, A. C., & Page, A. L. (1988). Relative concentration of cadmium and zinc in tissue of selected food crops grown on sludge treated soil. Journal of Environmental Quality, 17, 568–573.

    Article  CAS  Google Scholar 

  • Larbi, A., Morales, F., Abadda, A., Gogorcena, Y., Lucena, J. J., & Abadda, J. (2002). Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Functional Plant Biology, 29, 1453–1464.

    Article  CAS  Google Scholar 

  • Li, S. L., Wang, H. X., & Wu, Y. S. (1990). Antagonistic effect of zinc on cadmium in water hyacinth. Acta Scientiae Circumstantiae, 10, 244–249.

    CAS  Google Scholar 

  • Liu, J., Li, K. Q., Xu, J. K., Liang, J. S., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research, 83, 271–281.

    Article  Google Scholar 

  • Liu, J., Qian, M., Cai, G., Yang, J., & Zhu, Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials, 143, 443–447.

    Article  CAS  Google Scholar 

  • Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 437–474). Madison: ASA and SSSA.

    Google Scholar 

  • Long, X. X., Yang, X. E., Ni, W. Z., Ye, Z. Q., He, Z. L., Calvert, D. V., & Stoffela, J. P. (2003). Assesing zinc thresholds for phytotoxic and potential dietary toxicity in selected vegetable crops. Communications in Soil Science and Plant Analysis, 34, 1421–1434.

    Article  CAS  Google Scholar 

  • López-Millán, A.-F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65, 376–385.

    Article  Google Scholar 

  • Lozano Rodriguez, E., Hernandez, L. E., Bonay, P., & CarpenaRuiz, R. O. (1997). Distribution of cadmium in shoot and root tissues of maize and pea plants: Physiological disturbances. Journal of Experimental Botany, 48, 123–128.

    Article  CAS  Google Scholar 

  • Lund, L. J., Betty, E. E., Page, A. L., & Elliott, R. A. (1981). Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. Journal of Environmental Quality, 10, 551–556.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed., p. 889). London: Academic Press.

    Google Scholar 

  • McKenna, I. M., Chaney, R. L., & Williams, F. M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environment Pollution, 79, 113–120.

    Article  CAS  Google Scholar 

  • Mohammad, A., & Moheman, A. (2010). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Archives of Agronomy and Soil Science, 56, 551–561.

    Article  CAS  Google Scholar 

  • Moreno-Caselles, J., Moral, R., Perez-Espinosa, A., & Perez-Murcia, M. D. (2000). Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 23, 250–243.

    Article  Google Scholar 

  • Nan, Z., Li, J., Zhang, J., & Cheng, G. (2002). Cadmium and zinc interactions and their transfer in soil crop system under actual field conditions. Science of the Total Environment, 285, 187–195.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 961–1010). Madison: ASA and SSSA.

    Google Scholar 

  • Pallavi, S., & Shanker, D. R. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34.

    Google Scholar 

  • Peralta-Videa, J. R., Gardea-Torresday, J. L., Gomez, E., Tiemann, K. J., Parsons, J. G., & Carrillo, G. (2002). Effect of mixed cadmium, copper, nickel, and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119, 291–301.

    Article  CAS  Google Scholar 

  • Piotrowska, M., Dudka, S., & Chilopecka, A. (1994). Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and metal contents of plants. Water Air Soil Pollution, 76, 333–341.

    Article  Google Scholar 

  • Rauser, W. E. (1986). The amount of cadmium associated with Cd-binding protein in roots of Agrostis gigantea, maize and tomato. Plant Science, 43, 85–91.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 417–435). Madison: ASA and SSSA.

    Google Scholar 

  • Shang, Z. R., & Leung, J. K. (2003). 110mAg root and foliar uptake in vegetables and its migration in soil. Journal of Environmental Radioactivity, 65, 297–307.

    Article  CAS  Google Scholar 

  • Sheppard, M. I., & Sheppard, S. C. (1985). The plant concentration concept as applied to natural uranium. Health Physics, 48, 494–500.

    CAS  Google Scholar 

  • Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: implications for human health. Plant and Soil, 257, 163–170.

    Article  CAS  Google Scholar 

  • Sinha, S., Gupta, A. K., Bhatt, k., Pandey, K., Rai, U. N., & Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physicochemical properties of the soil. Environmental Monitoring and Assessment, 115, 1–22.

    Article  CAS  Google Scholar 

  • Streit, B., & Stumm, W. (1993). Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In B. Market (Ed.), Plants as bio-monoitors: indicators for heavy metals in terrestrial environment (pp. 31–62). Weinheim: VCH.

    Google Scholar 

  • Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 1201–1229). Madison: ASA and SSSA.

    Google Scholar 

  • Takijima, Y., & Katsumi, F. (1973). Cadmium contamination of soils and rice plants caused by zinc mining. l. Production of high-cadmium rice on the paddy fields in lower reaches of the mine station. Soil Science and Plant Nutrition, 19, 29–38.

    Article  CAS  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil scidity. In D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert (Eds.), Methods of soil analysis: part 3—chemical methods (pp. 475–490). Madison: ASA and SSSA.

    Google Scholar 

  • Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, 95–117.

    Article  CAS  Google Scholar 

  • Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W., & Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75(11), 1468–1476.

    Article  CAS  Google Scholar 

  • Wu, F., & Zhang, G. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. Journal of Plant Nutrition, 25, 2745–2761.

    Article  CAS  Google Scholar 

  • Yang, H., Wong, J. W., Yang, Z. M., & Zhou, L. X. (2001). Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Science (China), 13, 368–375.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Scientific Research Deanship at Jordan University of Science and Technology, grant no. 7-2013. The authors also acknowledge the support from Department of Soil Science/Soil Ecology, Institute of Geography, Ruhr-University Bochum, Germany, for using lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun A. Gharaibeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaibeh, M.A., Albalasmeh, A.A., Marschner, B. et al. Cadmium Uptake and Translocation of Tomato in Response to Simulated Irrigation Water Containing Elevated Concentrations of Cadmium and Zinc in Clayey Soil. Water Air Soil Pollut 227, 133 (2016). https://doi.org/10.1007/s11270-016-2829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2829-8

Keywords

Navigation