Skip to main content
Log in

Burkholderia sp. SCMS54 Triggers a Global Stress Defense in Tomato Enhancing Cadmium Tolerance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium is a toxic element for living organisms. This metal causes different damages to the cell, generating oxidative stress. In order to elucidate cadmium tolerance mechanism and increase tomato plant tolerance by inoculating a Cd-tolerant Burkholderia strain, we analyzed malondialdehyde, hydrogen peroxide content, and the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase of two strains, one isolated from a soil contaminated with Cd (strain SCMS54) and the other from a soil without Cd (strain SNMS32). Strains SNMS32 and SCMS54 exhibited different SOD, CAT, and GR isoenzyme profiles in non-denaturing polyacrylamide gel electrophoresis analysis, with strain SCMS54 exhibiting an extra isoenzyme for all enzymes (Mn-SOD, CAT I, and GR IV, respectively). Despite accumulating more Cd, strain SCMS54 did not increase peroxide hydrogen and presented a fast antioxidant response (increasing SOD and CAT after 5 h of Cd exposure). In this way, strain SCMS54 exhibited a higher metabolic diversity and plasticity when compared to strain SNMS32, so it was selected for Cd–Burkholderia–tomato interaction studies. Inoculated tomato plants in the presence of Cd grew more than non-inoculated plants with Cd indicating that the SCMS54 increased tomato Cd tolerance. It appears that the strain isolated from Cd-contaminated soil (SCMS54) triggers a global stress response in tomato increasing plant tolerance, which may enable plants to be cultivated in Cd-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Shanab, R. A. I., Van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68, 360–367.

    CAS  Google Scholar 

  • Ahmad, I., Akhtar, M. J., Zahir, Z. A., Naveed, M., Mitter, B., & Sessitsch, A. (2014). Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environmental Science and Pollution Research, 21, 11054–11065.

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24, 1337–1344.

    CAS  Google Scholar 

  • Allocati, N., Federici, L., Masulli, M., & Di Ilio, C. (2009). Glutathione transferases in bacteria. Federation of European Biochemical Societies Journal, 276, 58–75.

    CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed., p. 368p). London: Blackie Academic & Professional.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    CAS  Google Scholar 

  • Arruda, M. A. Z., & Azevedo, R. A. (2009). Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Annals of Applied Biology, 155, 301–307.

    CAS  Google Scholar 

  • Azcón, R., Perálvarez, M. D. C., Roldán, A., & Barea, J.-M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59, 668–677.

    Google Scholar 

  • Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104, 280–292.

    CAS  Google Scholar 

  • Azevedo, R. A., Gratão, P. L., Monteiro, C. C., & Carvalho, R. F. (2012). What is new in the research on cadmium-induced stress in plants? Food and Energy Security, 1, 133–140.

    Google Scholar 

  • Banjerdkij, P., Vattanaviboon, P., & Mongkolsuk, S. (2005). Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Applied and Environmental Microbiology, 71, 1843–1849.

    CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 287, 276–287.

    Google Scholar 

  • Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112, 1193–1206.

    CAS  Google Scholar 

  • Bianucci, E., Fabra, A. & Castro, S. (2012). Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals, 25, 23–32.

  • Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M. G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry, 74, 165–175.

    CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Bulbovas, P., Souza, S. R., Esposito, J. B. N., Moraes, R. M., Alves, E. S., Domingos, M., & Azevedo, R. A. (2014). Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas. Environmental Science and Pollution Research, 21, 10514–10524.

    CAS  Google Scholar 

  • Cabiscol, E., Tamarit, J., & Ros, J. (2010). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3, 3–8.

    Google Scholar 

  • Cervantes, C., Acevedo-Aguila, F., Léon-Rodríguez, I. L., Rivera-Cano, M. E., Avila-Rodríguez, M., Wrobel-Kaczmarczyk, K., Wróbel-Zasada, K., Gutiérrez-Corona, J. F., Rodríguez-Zavala, J. S., & Moreno-Sánchez, R. (2006). Interacciones microbianas con metales pesados. Revista Latinoamericana de Microbiología, 48, 203–210.

    CAS  Google Scholar 

  • CETESB (2005). Valores orientados para solos e aguas subterraneas no estado de Sao Paulo, Sao Paulo, 4p

  • Chen, Z. J., Sheng, X. F., He, L. Y., Huang, Z., & Zhang, W. H. (2013). Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. Journal of Hazardous Materials, 244–245, 709–717.

    Google Scholar 

  • Cia, M. C., Guimarães, A. C. R., Medici, L. O., Chabregas, S. M., & Azevedo, R. A. (2012). Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology, 161, 313–324.

    CAS  Google Scholar 

  • Claire-Lise, M., & Nathalie, V. (2012). The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnology, 30, 9–14.

    CAS  Google Scholar 

  • Clemens, S., Aarts, M. G., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18, 92–99.

    CAS  Google Scholar 

  • Coenye, T., Vandamme, P., Govan, J. R. W., Lipuma, J., & Coenye, T. O. M. (2001). Taxonomy and identification of the Burkholderia cepacia complex. Journal of Clinical Microbiology, 39, 3427–3436.

    CAS  Google Scholar 

  • Das, P., Samantaray, S., & Rout, G. (1997). Studies on cadmium toxicity in plants: a review. Environmental Pollution, 98, 29–36.

    CAS  Google Scholar 

  • Dourado, M. D., Martins, P. F., Quecine, M. C., Piotto, F. A., Souza, L. A., Franco, M. R., Tezotto, T., & Azevedo, R. A. (2013). Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Annals of Applied Biology, 163, 494–507.

    CAS  Google Scholar 

  • Dworkin, M., & Foster, J. W. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75, 592–603.

    CAS  Google Scholar 

  • Eerd, L. V., Hoagland, R., Zablotowicz, R., & Hall, J. (2003). Pesticide metabolism in plants and microorganisms. Weed Science, 51, 472–495.

    Google Scholar 

  • Farr, S. B., & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiological Reviews, 55, 561–585.

    CAS  Google Scholar 

  • Ferreira, A., Quecine, M. C., Lacava, P. T., Oda, S., Azevedo, J. L., & Araújo, W. L. (2008). Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters, 287, 8–14.

    CAS  Google Scholar 

  • Figueira, E. M. A. P., Lima, A. I. G., & Pereira, S. I. A. (2005). Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Canadian Journal of Microbiology, 51, 7–14.

    CAS  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.

    CAS  Google Scholar 

  • Gadd, G. M., Rhee, Y. J., Stephenson, K., & Wei, Z. (2012). Geomycology: metals, actinides and biominerals. Environmental Microbiology Reports, 4, 270–296.

    CAS  Google Scholar 

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    CAS  Google Scholar 

  • García, V., Godoy, P., Daniels, C., Hurtado, A., Ramos, J. L., & Segura, A. (2010). Functional analysis of new transporters involved in stress tolerance in Pseudomonas putida DOT-T1E. Environmental Microbiology Reports, 2, 389–395.

    Google Scholar 

  • Gharieb, M. M., & Gadd, G. M. (2004). Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals, 17, 183–188.

    CAS  Google Scholar 

  • Ghelfi, A., Gaziola, S. A., Cia, M. C., Chabregas, S. M., Falco, M. C., Kuser-Falcão, P. R., & Azevedo, R. A. (2011). Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Annals of Applied Biology, 159, 267–280.

    CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases. Plant Physiology, 59, 309–314.

    CAS  Google Scholar 

  • Goupil, P., Souguir, D., Ferjani, E., Faure, O., Hitmi, A., & Ledoigt, G. (2009). Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. Journal of Plant Physiology, 166, 1446–1452.

    CAS  Google Scholar 

  • Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481–494.

    Google Scholar 

  • Gratão, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P., & Azevedo, R. A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology, 153, 321–333.

    Google Scholar 

  • Gratão, P. L., Monteiro, C. C., Rossi, M. L., Martinelli, A. P., Peres, L. E. P., Medici, L. O., Lea, P. J., & Azevedo, R. A. (2009). Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany, 67, 387–394.

    Google Scholar 

  • Gratão, P. L., Monteiro, C. C., Carvalho, R. F., Tezotto, T., Piotto, F. A., Peres, L. E. P., & Azevedo, R. A. (2012). Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry, 56, 79–96.

    Google Scholar 

  • Green, J., & Paget, M. (2004). Bacterial redox sensors. Nature Reviews Microbiology, 2, 954–967.

    CAS  Google Scholar 

  • Guelfi, A., Azevedo, R. A., Lea, P. J., & Molina, S. M. G. (2003). Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach. Journal of General and Applied Microbiology, 49, 63–73.

    CAS  Google Scholar 

  • Guo, J., Xu, L., Su, Y., Wang, H., Gao, S., Xu, J., & Que, Y. (2013). ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BioMedical Research International, 2013, 904769.

    Google Scholar 

  • Harrison, J. J., Tremaroli, V., Stan, M. A., Chan, C. S., Vacchi-Suzzi, C., Heyne, B. J., Parsek, M. R., Ceri, H., & Turner, R. J. (2009). Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environmental Microbiology, 11, 2491–2509.

    CAS  Google Scholar 

  • Hazen, T. C., & Tabak, H. H. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Reviews in Environmental Science and Bio/Technology, 4, 157–183.

    CAS  Google Scholar 

  • Helbig, K., Bleuel, C., Krauss, G. J., & Nies, D. H. (2008a). Glutathione and transition-metal homeostasis in Escherichia coli. Journal of Bacteriology, 190, 5431–5438.

    CAS  Google Scholar 

  • Helbig, K., Grosse, C., & Nies, D. H. (2008b). Cadmium toxicity in glutathione mutants of Escherichia coli. Journal of Bacteriology, 190, 5439–5454.

    CAS  Google Scholar 

  • Hu, P., Brodie, E. L., Suzuki, Y., Mcadams, H. H., & Andersen, G. L. (2005). Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. Journal of Bacteriology, 187, 8437–8449.

    CAS  Google Scholar 

  • Jin, Z. M., Sha, W., Zhang, Y. F., Zhao, J., & Ji, H. (2013). Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover. Canadian Journal of Microbiology, 59, 449–455.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed., p. 432p). Boca Raton: CRC.

    Google Scholar 

  • Kanazawa, S., & Mori, K. (1996). Isolation of cadmium-resistant bacteria and their resistance mechanisms. Soil Science and Plant Nutrition, 42, 725–730.

    CAS  Google Scholar 

  • Khan, S., Hesham, A. E., & Qiao, M. (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 17, 288–296.

    CAS  Google Scholar 

  • Khonsue, N., Kittisuwan, K., Kumsopa, A., Tawinteung, N., & Prapagdee, B. (2013). Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum. Water, Air, and Soil Pollution, 224, 1696.

    Google Scholar 

  • Kim, Y. O., Patel, D. H., Lee, D. S., Song, Y., & Bae, H. J. (2011). High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco. Bioscience Biotechnology and Biochemistry, 75, 1912–1920.

    CAS  Google Scholar 

  • Kraus, T. E., Mckersie, B. D., & Fletcher, R. A. (1995). Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. Journal of Plant Physiology, 145, 570–576.

    CAS  Google Scholar 

  • Kukier, U., Chaney, R. L., Ryan, J. A., Daniels, W. L., Dowdy, R. H., & Granato, T. C. (2010). Phytoavailability of cadmium in long-term biosolids-amended soils. Journal of Environmental Quality, 39, 519–530.

    CAS  Google Scholar 

  • Kumar, K. V., & Patra, D. D. (2013). Influence of nickel and cadmium resistant PGPB on metal accumulation and growth responses of Lycopersicon esculentum plants grown in fly ash amended soil. Water, Air, and Soil Pollution, 224, 1357.

    Google Scholar 

  • Laemmli, U. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    CAS  Google Scholar 

  • Larossa, R. A., Smulski, D. R., & Dyk, T. K. V. (1995). Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants. Journal of Industrial Microbiology, 14, 252–258.

    CAS  Google Scholar 

  • Leverrier, P., Montigny, C., Garrigos, M., & Champeil, P. (2007). Metal binding to ligands: cadmium complexes with glutathione revisited. Analytical Biochemistry, 371, 215–228.

    CAS  Google Scholar 

  • Li, N., Li, Z., Fu, Q., Zhuang, P., Guo, B., & Li, H. (2013). Agricultural technologies for enhancing the phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus L. Water, Air, and Soil Pollution, 224, 1673.

    Google Scholar 

  • Lima, A. I. G., Corticeiro, S. C., & Figueira, E. M. A. P. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39, 763–769.

    CAS  Google Scholar 

  • Luvizotto, D. M., Marcon, J., Andreote, F. D., Dini-Andreote, F., Neves, A. A. C., Araújo, W. L., & Pizzirani-Kleiner, A. A. (2010). Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World Journal of Microbiology and Biotechnology, 26, 1829–1836.

    CAS  Google Scholar 

  • Ma, X. X., Jiang, Y. L., He, Y. X., Bao, R., Chen, Y., & Zhou, C. Z. (2009). Structures of yeast glutathione-S-transferase Gtt2 reveal a new catalytic type of GST family. EMBO Reports, 10, 1320–1326.

    CAS  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., & Sa, T. (2007). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere, 69, 220–228.

    CAS  Google Scholar 

  • Martins, P. F., Carvalho, G., Gratão, P. L., Dourado, M. N., Pileggi, M., Araújo, W. L., & Azevedo, R. A. (2011). Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria. Process Biochemistry, 46, 1186–1195.

    CAS  Google Scholar 

  • Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxidants & Redox Signaling, 8, 753–762.

    CAS  Google Scholar 

  • Medici, L. O., Azevedo, R. A., Smith, R. J., & Lea, P. J. (2004). The influence of nitrogen supply on antioxidant enzymes in plant roots. Functional Plant Biology, 31, 1–9.

    CAS  Google Scholar 

  • Milioni, D., & Hatzopoulos, P. (1997). Genomic organization of hsp90 gene family in Arabidopsis. Plant Molecular Biology, 35, 955–961.

    CAS  Google Scholar 

  • Miller, C. D., Pettee, B., Zhang, C., Pabst, M., McLean, J. E., & Anderson, A. J. (2009). Copper and cadmium: responses in Pseudomonas putida KT2440. Letters in Applied Microbiology, 49, 775–783.

    CAS  Google Scholar 

  • Mobin, M., & Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164, 601–610.

    CAS  Google Scholar 

  • Monteiro, C. C., Carvalho, R. F., Gratão, P. L., Carvalho, G., Tezotto, T., Medici, L. O., Peres, L. E. P., & Azevedo, R. A. (2011). Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environmental and Experimental Botany, 71, 306–320.

    CAS  Google Scholar 

  • Muangchinda, C., Pansri, R., Wongwongsee, W., & Pinyakong, O. (2013). Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. Journal of Applied Microbiology, 114, 1311–1324.

    CAS  Google Scholar 

  • Ouziad, F., Hildebrandt, U., Schmelzer, E., & Bothe, H. (2005). Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. Journal of Plant Physiology, 162, 634–649.

    CAS  Google Scholar 

  • Pacheco, C. C., Passos, J. F., Castro, A. R., Moradas-Ferreira, P., & De Marco, P. (2008). Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Archives of Microbiology, 189, 271–278.

    CAS  Google Scholar 

  • Parra-Cota, F. I., Peña-Cabriales, J. J., de Los Santos-Villalobos, S., Martínez-Gallardo, N. A., & Délano-Frier, J. P. (2014). Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One, 12, 9(2). e88094.

  • Paungfoo-Lonhienne, C., Lonhienne, T. G., Yeoh, Y. K., Webb, R. I., Lakshmanan, P., Chan, C. X., Lim, P. E., Ragan, M. A., Schmidt, S., & Hugenholtz, P. (2014). A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microbial Biotechnology, 7, 142–154.

    CAS  Google Scholar 

  • Perin, L., Martnez-Aguilar, L., Castro-Gonzalez, R., Estrada-De Los Santos, P., Cabellos-Avelar, T., Guedes, H. V., Reis, V. M., & Caballero-Mellado, J. (2006). Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Applied and Environmental Microbiology, 72, 3103–3110.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Pizzaia, D. (2013) Genotoxicidade do cádmio em tomateiro (Solanum lycopersicum L.). Thesis (PhD in Genetics and Plant Breeding)—Escola Superior de Agricultura “Luiz de Queiroz”. Universidade de São Paulo, Piracicaba, 98p

  • Poupin, M. J., Timmermann, T., Vega, A., Zuñiga, A., & González, B. (2013). Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One, 15, 8(7). e69435.

  • Rehman, A., & Anjum, M. S. (2011). Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174, 585–595.

    CAS  Google Scholar 

  • Rodrigues, V. D., Martins, P. F., Gaziola, S. A., Azevedo, R. A., & Ottoboni, L. M. M. (2010). Antioxidant enzyme activity in Acidithiobacillus ferrooxidans LR maintained in contact with chalcopyrite. Process Biochemistry, 45, 914–918.

    CAS  Google Scholar 

  • Rossbach, S., Mai, D. J., Carter, E. L., Sauviac, L., Capela, D., Bruand, C., & De Bruijn, F. J. (2008). Response of Sinorhizobium meliloti to elevated concentrations of cadmium and zinc. Applied and Environmental Microbiology, 74, 4218–4221.

    CAS  Google Scholar 

  • Saier, M. H., Jr., & Trevors, J. T. (2010). Phytoremediation. Water, Air, and Soil Pollution, 205(Suppl 1), S61–S63.

    Google Scholar 

  • Sangali, S., & Brandelli, A. (2000). Feather keratin hydrolysis by a Vibrio sp. strain kr2. Journal of Applied Microbiology, 89, 735–743.

    CAS  Google Scholar 

  • Sathyapriya, H., Sariah, M., Akmar, A. S. N., & Wong, M. (2012). Root colonisation of Pseudomonas aeruginosa strain UPMP3 and induction of defence-related genes in oil palm (Elaeis guineensis). Annals of Applied Biology, 160, 137–144.

    CAS  Google Scholar 

  • Schwager, S., Lumjiaktase, P., Stöckli, M., Weisskopf, L., & Eberl, L. (2012). The genetic basis of cadmium resistance of Burkholderia cenocepacia. Environmental Microbiology Reports, 4, 562–568.

    CAS  Google Scholar 

  • Scrutton, N. S., Berry, A., & Perham, R. N. (1987). Purification and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli. Biochemical Journal, 245, 875–880.

    CAS  Google Scholar 

  • Seidel, H., Löser, C., Zehnsdorf, A., Hoffmann, P., & Schmerold, R. (2004). Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environmental Science & Technology, 38, 1582–1588.

    CAS  Google Scholar 

  • Shen, J. J., Qiao, Z. J., Xing, T. J., Zhang, L. P., Liang, Y. L., Jin, Z. P., Yang, G. D., Wang, R., & Pei, Y. X. (2012). Cadmium toxicity is alleviated by AtLCD and AtDCD in Escherichia coli. Journal of Applied Microbiology, 113, 1130–1138.

    CAS  Google Scholar 

  • Singh, A., Jain, A., Sarma, B. K., Upadhyay, R. S., & Singh, H. B. (2013). Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Annals of Applied Biology, 163, 33–46.

    Google Scholar 

  • Skopelitou, K., Dhavala, P., Papageorgiou, A. C., & Labrou, N. E. (2012). A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE, 7, e34263.

    CAS  Google Scholar 

  • Smith, I. K., Vierheller, T. L., & Thorne, C. A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry, 175, 408–413.

    CAS  Google Scholar 

  • Souza, L. A., Piotto, F. A., Nogueirol, R. C., & Azevedo, R. A. (2013). Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Scientia Agricola, 70, 290–295.

    CAS  Google Scholar 

  • Tezotto, T., Favarin, J. L., Azevedo, R. A., Alleoni, L. R. F., & Mazzafera, P. (2012). Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crops Research, 125, 25–34.

    Google Scholar 

  • Thorsen, M., Perrone, G. G., Kristiansson, E., Traini, M., Ye, T., Dawes, I. W., Nerman, O., & Tamás, M. J. (2009). Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 10, 105.

    Google Scholar 

  • Todorova, D., Nedeva, D., Abrashev, R., & Tsekova, K. (2008). Cd (II) stress response during the growth of Aspergillus niger B 77. Journal of Applied Microbiology, 104, 178–184.

    CAS  Google Scholar 

  • Tombuloglu, H., Semizoglu, N., Sakcali, S., & Kekec, G. (2012). Boron induced expression of some stress-related genes in tomato. Chemosphere, 86, 433–438.

    CAS  Google Scholar 

  • Valverde, A., Delvasto, P., Peix, A., Velázquez, E., Santa-Regina, I., Ballester, A., Rodríguez-Barrueco, C., García-Balboa, C., & Igual, J. M. (2006). Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil. International Journal of Systematic and Evolutionary Microbiology, 56, 2421–2425.

    CAS  Google Scholar 

  • Vitória, A. P., Da Cunha, M., & Azevedo, R. A. (2006). Ultrastructural changes of radish leaf exposed to cadmium. Environmental and Experimental Botany, 58, 47–52.

    Google Scholar 

  • Vivas, A., Barea, J. M., & Azcón, R. (2005). Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations. Microbial Ecology, 49, 416–424.

    CAS  Google Scholar 

  • Wahid, A., & Ghani, A. (2008). Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Annals of Applied Biology, 152, 59–69.

    CAS  Google Scholar 

  • Wang, X., Song, Y., Ma, Y., Zhuo, R., & Jin, L. (2011). Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.). Environmental Pollution, 159, 3627–3633.

    CAS  Google Scholar 

  • Wei, G., Fan, L., Zhu, W., Fu, Y., Yu, J., & Tang, M. (2009). Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials, 162, 50–56.

    CAS  Google Scholar 

  • Woodbury, W., Spencer, A., & Stahman, M. (1971). Improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry, 547, 301–305.

    Google Scholar 

  • Xia, J.-L., Wu, S., Zhang, R., Zhang, C., He, H., Jiang, H., Nie, Z., & Qiu, G. (2011). Effects of copper exposure on expression of glutathione-related genes in Acidithiobacillus ferrooxidans. Current Microbiology, 62, 1460–1466.

    CAS  Google Scholar 

  • Zhu, H., Guo, J., Chen, M., Feng, G., & Yao, Q. (2012). Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China. PLoS One, 7, e50225.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grant no. 2009/54676-0), which also granted to M.N.D. a graduate scholarship (FAPESP no. 2011/50368-9). Thanks are also due to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq no. Grant no. 477652/2010-7), which also granted to R.A.A. a research fellowship (CNPq no. 302540/2011-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourado, M.N., Souza, L.A., Martins, P.F. et al. Burkholderia sp. SCMS54 Triggers a Global Stress Defense in Tomato Enhancing Cadmium Tolerance. Water Air Soil Pollut 225, 2159 (2014). https://doi.org/10.1007/s11270-014-2159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2159-7

Keywords

Navigation