Skip to main content
Log in

Influence of Biofilm on Activated Carbon on the Adsorption and Biodegradation of Salicylic Acid in Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper presents a study of the combined process of adsorption and biodegradation in solid biologically activated carbon (AC) for the removal of salicylic acid aimed at determining the influence of the presence of biofilm on the process. Adsorption on AC and biodegradation of free cell cultures were studied separately so as to compare their performance with that of the combined biosorption system. The formation of bacterial biofilm on the surface of the carbon was investigated. The study was carried out using a range of synthetic solutions containing between 15 and 500 mg/L salicylic acid simulating an industrial effluent from the pharmaceutical industry. An individual bacterium, Pseudomonas putida (DSM 4478), was used to study the differentiated effects. Filtrasorb 400 and GAC 830 ACs were used in the adsorption processes and Filtrasorb 400 in the biofilm formation and combined biosorption processes. As regards, combined adsorption/biodegradation results indicated that the bioactivated carbon system outperformed the combination of conventional AC and biological water treatment processes when working with high pollutant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Characklis, W. G. (1981). Fouling biofilm development: a process analysis. Biotechnology and Bioengineering, 23, 1923–1960.

    Article  CAS  Google Scholar 

  • Chourio, E., Ferrer, X., Arrieta, I., Fernández, N., Sarmiento, C., & García, C. (1997). Diffusion models under the solid phase control for adsorption and ion-exchange. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 20(3), 245–255.

    CAS  Google Scholar 

  • Ferro Orozco, A. M., Contreras, E. M., & Zaritzkya, N. E. (2010). Dynamic response of combined activated sludge-powdered activated carbon batch systems. Chemical Engineering Journal, 157, 331–338.

    Article  CAS  Google Scholar 

  • Gibert, O., Lefèvre, B., Fernández, M., Bernat, X., Paraira, M., Calderer, M., Martínez-Lladó, X. (2013). Characterising biofilm development on granular activated carbon used for drinking water production. Water Research, 4 7, 1 1 0 1–1 1 1 0.

  • González, G., Herrera, M. G., García, M. T., & Peña, M. M. (2001). Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed reactor. Bioresources Technology, 76, 245–251.

    Article  Google Scholar 

  • Juang, R. S., & Tsai, S. Y. (2006). Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochemical Engineering Journal, 3, 133–140.

    Article  Google Scholar 

  • Karimi-Jashni, A., & Narbaitz, R. M. (1997). Impact of pH on the adsorption and desorption kinetics of 2-nitrophenol on activated carbons. Water Research, 31(12), 3039–3044.

    Article  CAS  Google Scholar 

  • Khenniche, L., & Aissani, F. (2010). Preparation and characterization of carbons from coffee residue: adsorption of salicylic acid on the prepared carbons. Chemical Engineering Journal, 55, 728–734.

    CAS  Google Scholar 

  • LeChevalier, M. W., Hassenauer, T. S., Champer, A. K., & McFeters, G. A. (1984). Disinfection of bacteria attached to granular activated carbon. Applied and Environmental Microbiology, 48(5), 918–923.

    Google Scholar 

  • Loh, K. C., & Bin, C. (2008). Paradigm in biodegradation using Pseudomonas putida-a review of proteomics studies. Enzyme and Microbial Technology, 43, 1–12.

    Article  CAS  Google Scholar 

  • Loh, K. C., & Yu, Y.-G. (2000). Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate. Water Research, 34(17), 4131–4138.

    Article  CAS  Google Scholar 

  • Monteiro, A. A. M. G., Boaventura, R. A. R., & Rodrigues, A. E. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6, 45–49.

    Article  CAS  Google Scholar 

  • Navia, R., Inostroza, X., & Diez, M.C. (2003). Modelación matemática de la adsorción de contaminantes de efluentes de celulosa en el suelo de origen volcánico. XV Congreso de ingeniería sanitaria y ambiental AIDIS-Chile. Oct 1-3, Concepción, Chile.

  • Olmstead, K. P., & Weber, W. J. (1991). Interactions between microorganisms and activated carbon in water and waste treatment operations. Chemical Engineering Communications, 108, 113–125.

    Article  CAS  Google Scholar 

  • Ong, S. A., Toorisaka, E., Hirata, M., & Hano, T. (2008). Granular activated carbon-biofilm configured sequencing batch reactor treatment of C.I. Acid Orange 7. Dyes and Pigments, 76, 142–146.

    Article  Google Scholar 

  • Orshansky, F., & Narkis, N. (1996). Characteristics of organics removal by pact simultaneous adsorption and biodegradation. Water Research, 31(3), 391–398.

    Article  Google Scholar 

  • Otero, M., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. Reactive and Functional Polymers, 60, 203–213.

    Article  CAS  Google Scholar 

  • Özkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials B, 129, 158–163.

    Article  Google Scholar 

  • Pai, S. L., Hsu, Y. L., Chong, N. M., Sheu, C. S., & Chen, C. H. (1994). Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Bioresource Technology, 51, 37–42.

    Article  Google Scholar 

  • Ploux, L., Beckendorff, S., Nardin, M., & Neunlist, S. (2007). Quantitative and morphological analysis of biofilm formation on self-assembled monolayers. Colloids and Surfaces, B: Biointerfaces, 57, 174–181.

    Article  CAS  Google Scholar 

  • Prober, R., Pycha, J. J., & Kindon, W. E. (1975). Interaction of activated carbon with dissolved oxygen. American Institute of Chemical Engineers Journal, 6, 1200–1204.

    Article  Google Scholar 

  • Qadeer, R., & Rehan, A. H. (2002). Study of the adsorption of phenol by activated carbon from aqueous solutions. Turkish Journal of Chemistry, 26, 357–361.

    CAS  Google Scholar 

  • Silva, T., Valdman, E., Valdman, B., & Leite, S. G. F. (2007). Salicylic acid degradation from aqueous solutions using Pseudomonas fluorescens HK44: parameters studies and applications tools. Brazilian Journal of Microbiology, 38, 39–44.

    Article  Google Scholar 

  • Snell F.D., & Snell C.T. (1953). Colorimetric methods of analysis. Including some turbidimetric and nephelometric methods. Volume III, Organic-I, New York, D. Van Nostrand Company, Inc.

  • Torre, M., Bachiller, D., Rendueles, M., Menéndez, C. O., & Díaz, M. (2006). Cyanide recovery from gold extraction process waste effluents by ion exchange I. equilibrium and kinetics. Solvent Extraction and Ion Exchange, 24, 99–117.

    Article  CAS  Google Scholar 

  • Tsuneda, S., Auresenia, J., Inoue, Y., Hashimoto, Y., & Hirata, A. (2002). Kinetic model for dynamic response of three-phase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 10, 31–37.

    Article  CAS  Google Scholar 

  • Tsuneda, S., Inoue, Y., Auresenia, J., & Hirata, A. (2003). Adsorption effect on the dynamic response of a biochemical reaction in a biofilm reactor for wastewater treatment. Engineering in Life Sciences, 3(9), 371–375.

    Article  CAS  Google Scholar 

  • Van der Kooij, D., Veenendaal, H. R., Baars-Lorist, C., Van der Klift, D. W., & Drost, Y. C. (1995). Biofilm formation on surfaces of glass and teflon exposed to treated water. Water research, 29(7), 1655–1662.

    Article  Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (1999). Biological activated carbon treatment of industrial wastewater in stirred tank reactors. Chemical Engineering Journal, 75, 201–206.

    Article  CAS  Google Scholar 

  • Wang, X., Deng, R., Jin, X., & Huang, J. (2012a). Gallic acid modified hyper-cross-linked resin and its adsorption equilibria and kinetics toward salicylic acid from aqueous solution. Chemical Engineering Journal, 191, 195–201.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, Y., Feng, L., Liu, P., & Zhang, X. (2012b). A novel adsorbent based on functionalized three-dimensionally ordered macroporous cross-linked polystyrene for removal of salicylic acid from aqueous solution. Chemical Engineering Journal, 203, 251–258.

    Article  CAS  Google Scholar 

  • Xing, W., Ngo, H. H., Kim, S. H., Guo, W. S., & Hagare, P. (2008). Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater. Bioresource Technology, 99, 8674–8678.

    Article  CAS  Google Scholar 

  • Ying, W.-C., & Weber, W. J. (1979). Bio-physicochemical adsorption model systems wastewater treatment. Journal Water Pollution Control Federation, 51(11), 2661–2677.

    CAS  Google Scholar 

Download references

Acknowledgments

R. G. Combarros wished to thank a research grant from the Government of the Principality of Asturias (Severo Ochoa Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combarros, R.G., Rosas, I., Lavín, A.G. et al. Influence of Biofilm on Activated Carbon on the Adsorption and Biodegradation of Salicylic Acid in Wastewater. Water Air Soil Pollut 225, 1858 (2014). https://doi.org/10.1007/s11270-013-1858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1858-9

Keywords

Navigation