Skip to main content
Log in

Bulk Atmospheric Mercury Fluxes for the Northern Great Plains, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Total atmospheric bulk mercury (Hg) concentration and deposition were measured from August 2008 to November 2010 at nine locations in the Northern Great Plains, USA using passive bulk mercury samplers. Monthly mercury concentrations ranged from 1.3 to 51.0 ng L−1 with an overall volume weighted mean of 12.9 ng L−1. Normalized daily Hg fluxes ranged from 0.43 to 110 ng m−2 day−1 with higher rates occurring during high precipitation months as rainfall during spring and summer. Annual deposition rates ranged from 5.82 to 9.21 μg m−2 year−1 and were comparable to studies performed at similar latitudes and to estimates from the Mercury Deposition Network (MDN). There was no significant difference (p > 0.05) between measured atmospheric mercury for one colocated bulk Hg sampler and an existing MDN wet-only sampler at Eagle Butte, South Dakota, demonstrating measurement unity between the two sampling techniques in this geographic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn, M.-C., Yi, S.-M., Holsen, T. M., & Han, Y.-J. (2011). Mercury wet deposition in rural Korea: concentrations and fluxes. Journal of Environmental Monitoring, 13(10).

  • Butler, T. J., Cohen, M. D., Vermeylen, F. M., Likens, G. E., Schmeltz, D., & Artz, R. S. (2008). Regional precipitation mercury trends in the eastern USA, 1998–2005: declines in the Northeast and Midwest, no trend in the Southeast. Atmospheric Environment, 42(7), 1582–1592.

    Article  CAS  Google Scholar 

  • Caffrey, J. M., Landing, W. M., Nolek, S. D., Gosnell, K. J., Bagui, S. S., & Bagui, S. C. (2010). Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability. Atmospheric Chemistry and Physics, 10(12), 5425–5434.

    Article  CAS  Google Scholar 

  • Chazin, J. D., Allen, M. K., & Rodger, B. C. (1995). Measurement of mercury deposition using passive samplers based on the Swedish (IVL) design. Atmospheric Environment, 29(11), 1201–1209.

    Article  CAS  Google Scholar 

  • Choi, H., Sharac, T. J., & Holsen, T. M. (2008). Mercury deposition in the Adirondacks: a comparison between precipitation and throughfall. Atmospheric Environment, 42(8), 1818–1827.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57(1), 17–28.

    Article  Google Scholar 

  • Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1–7.

    Article  CAS  Google Scholar 

  • Glass, G. E., & Sorensen, J. A. (1999). Six-year trend (1990–1995) of wet mercury deposition in the upper midwest, U.S.A. Environmental Science and Technology, 33(19), 3303–3312.

    Article  CAS  Google Scholar 

  • Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (2001). Processes influencing rainfall deposition of mercury in Florida. Environmental Science and Technology, 35(5), 863–873.

    Article  CAS  Google Scholar 

  • Gustin, M., & Jaffe, D. (2010). Reducing the uncertainty in measurement and understanding of mercury in the atmosphere. Environmental Science and Technology, 44(7), 2222–2227.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Lindberg, S. E., & Weisberg, P. J. (2008). An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry, 23(3), 482–493.

    Article  CAS  Google Scholar 

  • Iverfeldt, A. (1991). Mercury in forest canopy throughfall. Water, Air, and Soil Pollution, 56, 553–564.

    Article  CAS  Google Scholar 

  • Keeler, G. J., Landis, M. S., Norris, G. A., Christianson, E. M., & Dvonch, J. T. (2006). Sources of mercury wet deposition in eastern Ohio, USA. Environmental Science and Technology, 40(19), 5874–5881.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (1997). Global mercury emissions from gold and silver mining. Water, Air, and Soil Pollution, 97(3), 209–221.

    CAS  Google Scholar 

  • Landis, M. S., & Keeler, G. J. (2002). Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environmental Science and Technology, 36(21), 4518–4524.

    Article  CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., et al. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–33.

    Article  CAS  Google Scholar 

  • Lindberg, S., & Vermette, S. (1995). Workshop on sampling mercury in precipitation for the national atmospheric deposition program. Atmospheric Environment, 29(11), 1219–1220.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Porcella, D. B., Prestbo, E. M., Friedli, H. R., & Radke, L. F. (2004). The problem with mercury: too many sources, not enough sinks. Materials and Geoenvironment, 51(2), 1172–1176.

    CAS  Google Scholar 

  • Lyman, S. N., Gustin, M. S., Prestbo, E. M., & Marsik, F. J. (2007). Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. Environmental Science and Technology, 41(6), 1970–1976.

    Article  CAS  Google Scholar 

  • Mason, R. P., Abbott, M. L., Bodaly, R. A., Bullock, O. R., Driscoll, C. T., Evers, D., et al. (2005). Monitoring the response to changing mercury deposition. Environmental Science and Technology, 39(1), 14–22.

    Article  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., & Morel, F. M. (1994). The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta, 58(15), 3191–3198.

    Article  CAS  Google Scholar 

  • Mason, R. P., & Sheu, G. R. (2002). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4), 1093.

    Article  Google Scholar 

  • Mergler, D., Anderson, H. A., Chan, L. H., Mahaffey, K. R., Murray, M., Sakamoto, M., et al. (2007). Methylmercury exposure and health effects in humans: a worldwide concern. Ambio, 36(1), 3–11.

    Article  CAS  Google Scholar 

  • Morrison, K. A., Kuhn, E. S., & Watras, C. J. (1995). Comparison of three methods of estimating atmospheric mercury deposition. Environmental Science and Technology, 29(3), 571–576.

    Article  CAS  Google Scholar 

  • Munthe, J., Hultberg, H., & Iverfeldt, Å. (1995). Mechanisms of deposition of methylmercury and mercury to coniferous forests. Water, Air, and Soil Pollution, 80(1), 363–371.

    Article  CAS  Google Scholar 

  • NADP (2011a). Field methods/laboratory methods. http://nadp.sws.uiuc.edu/MDN. Accessed 20 June 2011.

  • NADP (2011b). MDN data retrieval options. http://nadp.sws.uiuc.edu/MDN/mdndata.aspx. Accessed 20 June 2011.

  • NADP (2011c). MDN maps. http://nadp.sws.uiuc.edu/MDN/maps.aspx. Accessed 20 June 2011.

  • NADP (2011d). Quality Assurance Support for the NADP. http://nadp.sws.uiuc.edu/QA/. Accessed 20 June 2011.

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40(22), 4048–4063.

    Article  CAS  Google Scholar 

  • Pirrone, N., Keeler, G. J., & Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30(17), 2981–2987.

    Article  CAS  Google Scholar 

  • Prestbo, E. M., & Gay, D. A. (2009). Wet deposition of mercury in the U.S. and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmospheric Environment, 43(27), 4223–4233.

    Article  CAS  Google Scholar 

  • Sakata, M., & Asakura, K. (2007). Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan. Atmospheric Environment, 41(8), 1669–1680.

    Article  CAS  Google Scholar 

  • Sakata, M., & Marumoto, K. (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39(17), 3139–3146.

    Article  CAS  Google Scholar 

  • Sakata, M., Marumoto, K., Narukawa, M., & Asakura, K. (2006). Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmospheric Environment, 40(3), 521–531.

    Article  CAS  Google Scholar 

  • Sanei, H., Outridge, P. M., Goodarzi, F., Wang, F., Armstrong, D., Warren, K., et al. (2010). Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmospheric Environment, 44(13), 1672–1681.

    Article  CAS  Google Scholar 

  • Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., & Scott, C. (2004). Global source attribution for mercury deposition in the United States. Environmental Science and Technology, 38(2), 555–569.

    Article  CAS  Google Scholar 

  • Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaeglé, L., & Sunderland, E. M. (2008). Global 3-D land–ocean–atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycles, 22(2), GB2011.

    Google Scholar 

  • Sorensen, J. A., Glass, G. E., & Schmidt, K. W. (1994). Regional patterns of wet mercury deposition. Environmental Science and Technology, 28(12), 2025–2032.

    Article  CAS  Google Scholar 

  • Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., & Dommergue, A. (2010). A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 10(17), 8245–8265.

    Article  CAS  Google Scholar 

  • Stone, J., McCutcheon, C., Stetler, L., & Chipps, S. (2011). Interrelationships between fish tissue mercury concentrations and water quality for South Dakota natural lakes and impoundments. Water, Air, and Soil Pollution, 222(1), 337–349.

    Article  CAS  Google Scholar 

  • Wolfe, M. F., Schwarzbach, S., & Sulaiman, R. A. (1998). Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry, 17(2), 146–160.

    Article  CAS  Google Scholar 

  • Zhang, L., Wright, L. P., & Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853–5864.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by a cooperative agreement with the National Park Service Northern Great Plains Inventory and Monitoring Network and the Great Lakes Inventory and Monitoring Network (Task Agreement No. J6067080024/002), the South Dakota Department of Environment and Natural Resources, and U.S. EPA Region 8. This research was initiated by the late Gene Stueven and completed on his behalf. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. The authors wish to thank former SDSM&T students Lance Larson, Cindie McCutcheon, and Haile Betemariam for constructing GIS isopleths, sampler deployment, and data collection. We also thank Kara Paintner, Pat Sampson (BADNP), Larry Cooper (HUR), Robert Berg (SEF), Doug Young (ANT), Marc Ohms (WCNP), Angela Wetz and Mark Biel (DTNM), Emily Vesey (TRNP), Robert Manasek (SBNM,) and Carlyle Ducheneaux (EB) for maintaining the samplers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupo, C.D., Stone, J.J. Bulk Atmospheric Mercury Fluxes for the Northern Great Plains, USA. Water Air Soil Pollut 224, 1437 (2013). https://doi.org/10.1007/s11270-013-1437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1437-0

Keywords

Navigation