Skip to main content

Advertisement

Log in

Assessment of the Effectiveness of a Solar System Heating an Anaerobic Bioreactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The performance of a solar system designed to heat a packed bed reactor for anaerobic treatment of municipal wastewater was evaluated, and the feasibility of employing low-scale solar reactors in small settlements or enterprises was investigated. An energy balance was performed using a simple reactor model previously proposed by Yiannopoulos et al. (Bioresource Technology 99:7742–7749, 2008) to estimate the size of a solar system in Patras, Greece. The main objective is to feed the reactor with warm water produced by solar energy and achieve an increase of temperature close to 35°C for the majority of the year. Model simulations indicated that the heat demand of the reactor could be balanced practically by a number of flat plate solar collectors supplying warm water at above 20°C for over 95% of the year. Therefore, the proposed system can offer a viable alternative to enhancing anaerobic treatment in wastewater facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AF:

Anaerobic filter

COD:

Chemical oxygen demand

HRT:

Hydraulic retention time

A c :

Solar collector area (m2)

c p :

Specific heat (J kg−1 K−1)

D :

Diameter of the reactor (m)

F R :

Solar collector heat removal factor

\( F_{\text{R}}^{\prime } \) :

Modified solar collector heat removal factor

I T :

Hourly incident irradiation per unit area of a tilted solar collector (W/m2)

K τα :

Irradiation incidence angle modifier

L :

Height of the reactor (m)

\( \dot{m} \) :

Mass flow rate (kg s−1)

p :

Fraction of the year that warm water with temperature greater than 20°C is delivered to the reactor (%)

q u :

Useful energy gain per unit area of solar collector (W m−2)

Q L :

Total heat demand by the solar reactor system (W)

\( \left\langle {{Q_{\text{L}}}} \right\rangle \) :

Cumulative heat demand by the solar reactor system (W)

Q Lb :

Heat losses due to biogas production (W)

Q Lc :

Heat demand by the reactor content (W)

Q Lp :

Pipe heat losses (W)

Q Lr :

Reactor heat losses from the insulated surfaces (W)

Q Ls :

Warm water storage tank heat losses to the surroundings (W)

Q u :

Useful energy gain of solar collector (W)

r c :

Energy gain correction factor

T a :

Warm water temperature at the reactor outlet (°C)

T e :

Ambient air temperature (°C)

T i :

Warm water temperature at the reactor inlet (°C)

T s :

Warm water storage tank temperature (°C)

\( T_{\text{s}}^{ + } \) :

Warm water storage tank temperature at the end of Δt = 1 h (°C)

U L :

Overall heat transfer coefficient for the collector (W m−2 K−1)

\( {U'_{\text{L}}} \) :

Modified overall heat transfer coefficient for the collector (W m−2 K−1)

V :

Reactor volume (m3)

V s :

Storage tank volume (m3)

z :

Vertical coordinate (m)

a :

Voidage

β :

Slope of solar collector (deg)

Δt :

Time increment (s)

λ :

Thermal conductivity of the reactor content (W m−1 K−1)

λ e :

Equivalent thermal conductivity of packed bed (W m−1 K−1)

λ p :

Thermal conductivity of pebble (W m−1 K−1)

λ w :

Thermal conductivity of water (W m−1 K−1)

ρ :

Density of fluids (kg m−3)

(τα):

Transmittance–absorbance products of the solar collector

(τα)′:

Modified transmittance–absorbance products of the solar collector

(τα) n :

Transmittance–absorbance product of the solar collector for irradiation perpendicular to the collector surface

References

  • Akpinar, E. K. (2004). Experimental determination of convective heat transfer coefficient of some agricultural products in forced convection drying. International Communications in Heat and Mass Transfer, 31, 585–595.

    Article  Google Scholar 

  • Alkhamis, T. M., El-Khazali, R., Kablan, M. M., & Alhusein, M. A. (2000). Heating of a biogas reactor using a solar energy system with temperature control unit. Solar Energy, 69, 239–247.

    Article  CAS  Google Scholar 

  • Axaopoulos, P., Panagakis, P., Tsavdaris, A., & Georgakakis, D. (2001). Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy, 70, 155–164.

    Article  CAS  Google Scholar 

  • Badescu, V. (2006). Optimum size and structure for solar energy collection systems. Energy, 31, 1819–1835.

    Article  CAS  Google Scholar 

  • Belessiotis, V., Mathioulakis, E., & Papanicolaou, E. (2010). Theoretical formulation and experimental validation of the input–output modelling approach for large solar thermal systems. Solar Energy, 84, 245–255.

    Article  CAS  Google Scholar 

  • Blanco, J., Malato, S., Fernandez-Ibanez, P., Alarcon, D., Gernjak, W., & Maldonado, M. I. (2009). Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 13, 1437–1445.

    Article  CAS  Google Scholar 

  • Dall-Bauman, L., Shamsuddin, I., & Govind, R. (1990). Analysis of hollow fiber bioreactor wastewater treatment. Biotechnology and Bioengineering, 35, 837–842.

    Article  CAS  Google Scholar 

  • Dombrovsky, L. A., Lipinski, W., & Steinfeld, A. (2007). A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. Journal of Quantitative Spectroscopy and Radiative Transfer, 103, 601–610.

    Article  CAS  Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes. New York: Wiley.

    Google Scholar 

  • Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems III: low temperature air-heating solar collectors for crop drying applications. Energy Conversion and Management, 40, 657–667.

    Article  CAS  Google Scholar 

  • El-Mashad, H. M., van Loon, W. K. P., & Zeeman, G. (2003). A model of solar energy utilisation in the anaerobic digestion of cattle manure. Biosystems Engineering, 84, 231–238.

    Article  Google Scholar 

  • El-Mashad, H. M., Zeeman, G., van Loon, W. K. P., Bot, G. P. A., & Lettinga, G. (2004). Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technology, 95, 191–201.

    Article  CAS  Google Scholar 

  • Haralambopoulos, D. A., Biskos, G., Halvadakis, C., & Lekkas, T. D. (2002). Dewatering of wastewater sludge through a solar still. Renewable Energy, 26, 247–256.

    Article  CAS  Google Scholar 

  • Hou, Z., Danxing, Zh, Hongguang, J., & Jun, S. (2007). Performance analysis of non-isothermal solar reactors for methanol decomposition. Solar Energy, 81, 415–423.

    Article  CAS  Google Scholar 

  • Kurklu, A., Bilgin, S., & Ozkan, B. (2003). A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse. Renewable Energy, 28, 683–697.

    Article  CAS  Google Scholar 

  • Madhlopa, A., & Ngwalo, G. (2007). Solar dryer with thermal storage and biomass-backup heater. Solar Energy, 81, 449–462.

    Article  Google Scholar 

  • Mahmoud, N., Zeeman, G., Gijzen, H., & Lettinga, G. (2004). Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-digester system. Water Research, 38, 2348–2358.

    Article  CAS  Google Scholar 

  • Manariotis, I. D., & Grigoropoulos, S. G. (2002). Low-strength wastewater treatment using an anaerobic baffled reactor. Water Environment Research, 74, 170–176.

    Article  CAS  Google Scholar 

  • Manariotis, I. D., & Grigoropoulos, S. G. (2003). Anaerobic treatment of low-strength wastewater in a biofilm reactor. Journal of Environmental Science and Health—Part A: Toxic/Hazardous Substances & Environmental Engineering, 38, 2057–2068.

    Article  Google Scholar 

  • Manariotis, I. D., & Grigoropoulos, S. G. (2006). Municipal-wastewater treatment using upflow-anaerobic filters. Water Environment Research, 78, 233–242.

    Article  CAS  Google Scholar 

  • Matsushige, K., Inamori, Y., Mizuochi, M., Hosomi, M., & Sudo, R. (1990). The effects of temperature on anaerobic filter treatment for low-strength organic wastewater. Environmental Technology, 11, 899–910.

    Article  CAS  Google Scholar 

  • Metcalf & Eddy (2003). Wastewater engineering: treatment and reuse. Revised by Tchobanoglous G., Burton F. L. and Stensel H. D., 4th edn, McGraw-Hill, Boston.

  • Ming, Qu, Hongxi, Y., & Archer, D. H. (2010). A solar thermal cooling and heating system for a building: experimental and model based performance analysis and design. Solar Energy, 84, 166–182.

    Article  Google Scholar 

  • Nafey, A. S. (2005). Simulation of solar heating systems-an overview. Renewable and Sustainable Energy Reviews, 9, 576–591.

    Article  Google Scholar 

  • Panteliou, S., Dentsoras, A., & Daskalopoulos, E. (1996). Use of expert systems for the selection and design of solar domestic hot water systems. Solar Energy, 57, 1–8.

    Article  Google Scholar 

  • Prasanna, U. R., & Umanand, L. (2011). Optimization and design of energy transport system for solar cooking application. Applied Energy, 88, 242–251.

    Article  Google Scholar 

  • Remund, J., Kunz, S., & Lang, R. (1999). METEONORM, global meteorological database for solar energy and applied climatology, solar engineering handbook, version 4.0. Meteotest, Bern.

  • Rohsenow, W. M., Hartnett, J. P., & Cho, Y. I. (1998). Handbook of heat transfer (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Salihoglu, N. K., Pinarli, V., & Salihoglu, G. (2007). Solar drying in sludge management in Turkey. Renewable Energy, 32, 1661–1675.

    Article  Google Scholar 

  • Santos, B. M., Queiroz, M. R., & Borges, T. P. F. (2005). A solar collector design procedure for crop drying. Brazilian Journal of Chemical Engineering, 22, 277–284.

    Article  CAS  Google Scholar 

  • Sukhatme, S. P. (1984). Solar energy: principles of thermal collection and storage. New Delhi: McGraw-Hill.

    Google Scholar 

  • Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy, 75, 367–373.

    Article  CAS  Google Scholar 

  • Tsilingiris, P. T. (1996). Solar water-heating design—a new simplified dynamic approach. Solar Energy, 57, 19–28.

    Article  Google Scholar 

  • Viraraghavan, T., & Varadarajan, R. (1996). Low-temperature kinetics of anaerobic-filter wastewater treatment. Bioresource Technology, 57, 165–171.

    Article  CAS  Google Scholar 

  • Voropoulos, K., Mathioulakis, E., & Belessiotis, V. (2004). A hybrid solar desalination and water heating system. Desalination, 164, 189–195.

    Article  CAS  Google Scholar 

  • Wu, Β., & Bibeau, E. L. (2006). Development of 3-D anaerobic digester heat transfer model for cold weather applications. Transactions of the American Society of Agricultural and Biological Engineers (ASABE), 49, 749–757.

    Google Scholar 

  • Yiannopoulos, A. Ch., Manariotis, I. D., & Chrysikopoulos, C. V. (2008). Design and analysis of a solar reactor for anaerobic wastewater treatment. Bioresource Technology, 99, 7742–7749.

    Article  CAS  Google Scholar 

  • Zakkour, P. D., Gaterell, M. R., Griffin, P., Gochin, R. J., & Lester, J. N. (2001). Anaerobic treatment of domestic wastewater in temperature climates: treatment plant modelling with economic considerations. Water Research, 35, 4137–4149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ch. Yiannopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ch. Yiannopoulos, A., Manariotis, I.D. & Chrysikopoulos, C.V. Assessment of the Effectiveness of a Solar System Heating an Anaerobic Bioreactor. Water Air Soil Pollut 223, 1443–1454 (2012). https://doi.org/10.1007/s11270-011-0956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0956-9

Keywords

Navigation