Skip to main content
Log in

Characterization of Groundwater Microbial Communities, Dechlorinating Bacteria, and In Situ Biodegradation of Chloroethenes Along a Vertical Gradient

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The variability of hydrogeochemical conditions can affect groundwater microbial communities and the natural attenuation of organic chemicals in contaminated aquifers. It is suspected that in situ biodegradation in anoxic plumes of chloroethenes depends on the spatial location of the contaminants and the electron donors and acceptors, as well as the patchiness of bacterial populations capable of reductive dechlorination. However, knowledge about the spatial variability of bacterial communities and in situ biodegradation of chloroethenes in aquifers is limited. Here, we show that changes of the bacterial communities, the distribution of putative dechlorinating bacteria and in situ biodegradation at the border of a chloroethenes plume (Bitterfeld, Germany) are related to local hydrogeochemical conditions. Biotic reductive dechlorination occurred along a 50 m vertical gradient, although significant changes of the hydrogeochemistry and contaminant concentrations, bacterial communities and distribution of putative dechlorinating bacteria (Dehalobacter spp., Desulfitobacterium spp., Dehalococcoides spp., and Geobacter spp.) were observed. The occurrence and variability of in situ biodegradation of chloroethenes were revealed by shifts in the isotope compositions of the chloroethenes along the vertical gradient (δ13C ranging from −14.4‰ to −4.4‰). Our results indicate that habitat characteristics were compartmentalized along the vertical gradient and in situ biodegradation occurred with specific reaction conditions at discrete depth. The polyphasic approach that combined geochemical and biomolecular methods with compound-specific analysis enabled to characterize the spatial variability of hydrochemistry, bacterial communities and in situ biodegradation of chloroethenes in a heterogeneous aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abulencia, C. B., Wyborski, D. L., Garcia, J. A., Podar, M., Chen, W. Q., Chang, S. H., et al. (2006). Environmental whole-genome amplification to access microbial populations in contaminated sediments. Applied and Environmental Microbiology, 72(5), 3291–3301.

    Article  CAS  Google Scholar 

  • Becue-Bertaut, M., & Pages, J. (2008). Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data. Computational Statistics and Data Analysis, 52(6), 3255–3268.

    Article  Google Scholar 

  • Boyd, E. S., Cummings, D. E., & Geesey, G. G. (2007). Mineralogy influences structure and diversity of ba communities associated with geological substrata in a pristine aquifer. Microbial Ecology, 54(1), 170–182.

    Article  Google Scholar 

  • Bradley, P. M., & Chapelle, F. H. (1996). Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environmental Science & Technology, 30(6), 2084–2086.

    Article  CAS  Google Scholar 

  • Bradley, P. M., & Chapelle, F. H. (1998). Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe, 4, 81–87.

    Article  CAS  Google Scholar 

  • Butler, E. C., & Hayes, K. F. (1999). Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environmental Science & Technology, 33(12), 2021–2027.

    Article  CAS  Google Scholar 

  • Carreon-Diazconti, C., Santamaria, J., Berkompas, J., Field, J. A., & Brusseau, M. L. (2009). Assessment of in situ reductive dechlorination using compound-specific stable isotopes, functional gene PCR, and geochemical data. Environmental Science & Technology, 43(12), 4301–4307.

    Article  CAS  Google Scholar 

  • Chapelle, F., Zelibor, J. Jr, Grimes, D., Knobel, L. (1987). Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater. Water Resources Research, 23, 1625–1632.

  • Chartrand, M. M. G., Waller, A., Mattes, T. E., Elsner, M., Lacrampe-Couloume, G., Gossett, J. M., et al. (2005). Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environmental Science & Technology, 39(4), 1064–1070.

    Article  CAS  Google Scholar 

  • Chu, K. H., Mahendra, S., Song, D. L., Conrad, M. E., & Alvarez-Cohen, L. (2004). Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. Environmental Science & Technology, 38(11), 3126–3130.

    Article  CAS  Google Scholar 

  • Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., et al. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31(1), 442–443.

    Article  CAS  Google Scholar 

  • Connon, S. A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S. J., & Semprini, L. (2005). Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environmental Microbiology, 7(2), 165–178.

    Article  CAS  Google Scholar 

  • Coplen, T. B., Brand, W. A., Gehre, M., Groning, M., Meijer, H. A. J., Toman, B., et al. (2006). New guidelines for delta C-13 measurements. Analytical Chemistry, 78(7), 2439–2441.

    Article  CAS  Google Scholar 

  • Cunningham, J. A., & Fadel, Z. J. (2007). Contaminant degradation in physically and chemically heterogeneous aquifers. Journal of Contaminant Hydrology, 94(3–4), 293–304.

    Article  CAS  Google Scholar 

  • Duhamel, M., & Edwards, E. A. (2006). Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiology Ecology, 58(3), 538–549.

    Article  CAS  Google Scholar 

  • Eaddy, E.A. (2008). Scale-up and characterization of an enrichment culture for bioaugmentation of the P-area chlorinated ethene plume at the Savannah river site. M.S. thesis, Clemson University, Clemson

  • Escofier, B., & Pages, J. (1994). Multiple factor-analysis (Afmult Package). Computational statistics and data analysis, 18(1), 121–140.

    Article  Google Scholar 

  • Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S., & El Fantroussi, S. (2004). Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Applied Microbiology and Technology, 66(2), 123–130.

    Article  CAS  Google Scholar 

  • Fagervold, S. K., May, H. D., & Sowers, K. R. (2007). Microbial reductive dechlorination of aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Applied and Environmental Microbiology, 73(9), 3009–3018.

    Article  CAS  Google Scholar 

  • Feris, K., Hristova, K., Gebreyesus, B., Mackay, D., & Scow, K. (2004). A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microbial Ecology, 48(4), 589–600.

    Article  CAS  Google Scholar 

  • Goldscheider, N., Hunkeler, D., & Rossi, P. (2006). Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 14(6), 926–941.

    Article  CAS  Google Scholar 

  • Grossmann, J., Poetke, D., Nitschke, F., Drangmeister, J., Oelmann, D., Hirsch, D., Dommaschk, K., & Naue, F. (2009). Fortschreibung Sanierungsrahmenkonzept Landesanstalt für Altlasten Freistellung, Bitterfeld-Wolfen. Fortschreibung Sanierungsrahmenkonzept SRK8, Internal reports, Ökologisches Grossprojekt Bitterfeld-Wolfen.Grossman Ingenieur Consult GmbH, Dresden, Germany.

  • Haack, S. K., & Bekins, B. A. (2000). Microbial populations in contaminant plumes. Hydrogeology Journal, 8(1), 63–76.

    Article  Google Scholar 

  • Heidrich, S., Weiss, H., & Kaschl, A. (2004). Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany). Environmental Pollution, 129, 277–288.

    Article  CAS  Google Scholar 

  • Hendrickson, E., Payne, J., Young, R., Starr, M., Perry, M., Fahnestock, S., et al. (2002). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe. Applied and Environmental Microbiology, 68(2), 485–495.

    Article  CAS  Google Scholar 

  • Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233–3241.

    CAS  Google Scholar 

  • Huang, L., Sturchio, N. C., Abrajano, T., Heraty, L. J., & Holt, B. D. (1999). Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Organic Geochemistry, 30((8A), 777–785.

    Article  Google Scholar 

  • Hunkeler, D., Aravena, R., & Butler, B. (1999). Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: Microcosm and field studies. Environmental Science & Technology, 33(16), 2733–2738.

    Article  CAS  Google Scholar 

  • Imfeld, G., Estop, C., Fetzer, I., Mészáros, E., Zeiger, S., Nijenhuis, I., et al. (2010). Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1, 2-dichloroethene-contaminated groundwater. FEMS Microbiology Ecology, 72, 74–88.

    Article  CAS  Google Scholar 

  • Imfeld, G., Nijenhuis, I., Nikolausz, M., Zeiger, S., Paschke, H., Drangmeister, J., et al. (2008). Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system. Water Research, 42, 871–882.

    Article  CAS  Google Scholar 

  • Jeong, H. Y., & Hayes, K. F. (2007). Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: Reaction rates. Environmental Science & Technology, 41(18), 6390–6396.

    Article  CAS  Google Scholar 

  • Kleikemper, J., Schroth, M. H., Sigler, W. V., Schmucki, M., Bernasconi, S. M., & Zeyer, J. (2002). Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Applied and Environmental Microbiology, 68(4), 1516–1523.

    Article  CAS  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA Sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics. New York: Wiley.

    Google Scholar 

  • Lehman, R. M. (2007). Understanding of aquifer microbiology is tightly linked to sampling approaches. Geomicrobiology Journal, 24(3–4), 331–341.

    Article  CAS  Google Scholar 

  • Lehman, R. M., & O'Connell, S. P. (2002). Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns. Applied and Environmental Microbiology, 68(4), 1569–1575.

    Article  CAS  Google Scholar 

  • Löffler, F. E., Sun, Q., Li, J. R., & Tiedje, J. M. (2000). 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Applied and Environmental Microbiology, 66(4), 1369–1374.

    Article  Google Scholar 

  • Maymo-Gatell, X., Chien, Y. T., Gossett, J. M., & Zinder, S. H. (1997). Isolation of a bacterium that reductivley dechlorinates tetrachloroethene to ethane. Science, 276(5318), 1568–1571.

    Article  CAS  Google Scholar 

  • McCarty, P., & Semperini, L. (1994). Groundwater treatment for chlorinated solvents. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Meckenstock, R., Morasch, B., Griebler, C., & Richnow, H. (2004). Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. Journal of Contaminant Hydrology, 75(3–4), 215–255.

    Article  CAS  Google Scholar 

  • Morrill, P. L., Sleep, B. E., Slater, G. F., Edwards, E. A., & Lollar, B. S. (2006). Evaluation of isotopic enrichment factors for the biodegradation of chlorinated ethenes using a parameter estimation model: Toward an improved quantification of biodegradation. Environmental Science & Technology, 40(12), 3886–3892.

    Article  CAS  Google Scholar 

  • Mouser, P. J., Rizzo, D. M., Röling, W. F. M., & Van Breukelen, B. M. (2005). A multivariate statistical approach to spatial representation of groundwater contamination using hydrochemistry and microbial community profiles. Environmental Science & Technology, 39(19), 7551–7559.

    Article  CAS  Google Scholar 

  • Nijenhuis, I., Nikolausz, M., Koth, A., Felfolfi, T., Weiss, H., Drangmeister, J., et al. (2007). Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere, 67(2), 300–311.

    Article  CAS  Google Scholar 

  • Nocker, A., Burr, M., & Camper, A. K. (2007). Genotypic microbial community profiling: A critical technical review. Microbial Ecology, 54(2), 276–289.

    Google Scholar 

  • Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., et al. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178(19), 5636–5643.

    CAS  Google Scholar 

  • Oksanen, J., Kindt, R., Legendre, P., O’Hara, R., Simpson, G., Solymos, P., Stevens, M., & Wagner, H. (2008). Vegan: community ecology package version 1.15-1. Available at: http://cran.r-project.org.

  • Poulson, S. R., & Drever, J. I. (1999). Stable isotope (C, Cl, and H) fractionation during vaporization of trichloroethylene. Environmental Science & Technology, 33(20), 3689–3694.

    Article  CAS  Google Scholar 

  • Röling, W. F. M., van Breukelen, B. M., Braster, M., Lin, B., & van Verseveld, H. W. (2001). Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Applied and Environmental Microbiology, 67(10), 4619–4629.

    Article  Google Scholar 

  • Rossi, P., Gillet, F., Rohrbach, E., Diaby, N., & Holliger, C. (2009). Statistical assessment of variability of terminal restriction fragment length polymorphism analysis applied to complex microbial communities. Applied and Environmental Microbiology, 75(22), 7268–7270.

    Article  CAS  Google Scholar 

  • Schlotelburg, C., von Wintzingerode, C., Hauck, R., von Wintzingerode, F., Hegemann, W., & Gobel, U. (2002). Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1, 2-dichloropropane. FEMS Microbiology Ecology, 39(3), 229–237.

    Article  CAS  Google Scholar 

  • Schüth, C., Taubald, H., Bolano, N., & Maciejczyk, K. (2003). Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. Journal of Contaminant Hydrology, 64(3–4), 269–281.

    Article  Google Scholar 

  • Seshadri, R., Adrian, L., Fouts, D., Eisen, J., Phillippy, A., Methe, B., et al. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science, 307(5706), 105–108.

    Article  CAS  Google Scholar 

  • Sherwood Lollar, B. S., Slater, G. F., Witt, M. B., Klecka, G. M., Harkness, M. R., & Spivack, J. (2001). Stable carbon isotope evidance for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environmental Science & Technology, 35, 261–269.

    Article  CAS  Google Scholar 

  • Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R., et al. (2007). Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? Journal of Microbiological Methods, 69(3), 470–479.

    Google Scholar 

  • Stelzer, N., Imfeld, G., Thullner, M., Lehmann, J., Poser, A., Richnow, H. H., et al. (2009). Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environmental Pollution, 157(6), 1800–1806.

    Article  CAS  Google Scholar 

  • Sung, Y., Fletcher, K. F., Ritalaliti, K. M., Apkarian, R. P., Ramos-Hernandez, N., Sanford, R. A., et al. (2006). Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology, 72(4), 2775–2782.

    Article  CAS  Google Scholar 

  • Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W., Flynn, S. J., Tiedje, J. M., et al. (2003). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp nov. Applied and Environmental Microbiology, 69(5), 2964–2974.

    Article  CAS  Google Scholar 

  • Ulrich, G., Martino, D., Burger, K., Routh, J., Grossman, E., Ammerman, J., et al. (1998). Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microbial Ecology, 36, 141–151.

    Google Scholar 

  • Vainberg, S., Condee, C. W., & Steffa, R. J. (2009). Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. Journal of Industrial Microbiology & Technology, 36(9), 1189–1197.

    Article  CAS  Google Scholar 

  • Vogel, T. M. (1994). Natural bioremediation of chlorinated solvents. In R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, D. H. Wilson, M. Kampbell, E. G. Reinhard, R. Bouwer, C. Borden, T. M. Vogel, J. M. Thomas, & C. H. Ward (Eds.), Handbook of bioremediation (pp. 201–225). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Watts, J. E. M., Fagervold, S. K., May, H. D., & Sowers, K. R. (2005). A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology-SGM, 151, 2039–2046.

    Article  CAS  Google Scholar 

  • Weiss, J. V., & Cozzarelli, I. M. (2008). Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. Ground Water, 46(2), 305–322.

    Article  CAS  Google Scholar 

  • Wilson, R. D., Thornton, S. F., & Mackay, D. M. (2004). Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation, 15(6), 359–369.

    Article  Google Scholar 

  • Wycisk, P., Weiss, H., Kaschl, A., Heidrich, S., & Sommerwerk, K. (2003). Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany). Toxicology Letters, 140–141, 343–351.

    Article  Google Scholar 

Download references

Acknowledgments

Gwenaël Imfeld was supported by a European Union Marie Curie Early-Stage Training Fellowship (AXIOM, contract no. MEST-CT-2004-8332) fellowship. The Department of Groundwater Remediation and the SAFIRA Project of the UFZ are acknowledged for organizing field work. We wish to thank to M. Gehre, U. Günther, K. Ethner, and S. Täglich for their technical support in analytical and stable isotope measurements and F. Gillet for his support in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaël Imfeld.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imfeld, G., Pieper, H., Shani, N. et al. Characterization of Groundwater Microbial Communities, Dechlorinating Bacteria, and In Situ Biodegradation of Chloroethenes Along a Vertical Gradient. Water Air Soil Pollut 221, 107–122 (2011). https://doi.org/10.1007/s11270-011-0774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0774-0

Keywords

Navigation