Skip to main content
Log in

Copper Uptake, Physiology and Cytogenetic Characteristics in Three Matricaria chamomilla Cultivars

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Selected physiological parameters and copper uptake by three chamomile (Matricaria chamomilla) cultivars (two tetraploid—‘Lutea’ and ‘Unknown’ and one diploid—‘Novbona’) exposed to 60 μM Cu over 7 days were studied. Genome size was 10.6 and 5.5 pg DNA/2C and chromosome number 2n = 36 and 2n = 18 in tetraploids and diploid, respectively. Root tissue water content and dry biomass were more reduced in diploid cultivar. Soluble proteins were depressed by Cu excess in all cultivars without respect to ploidy. Lignin accumulation and cinnamylalcohol dehydrogenase activity was the highest in Novbona. Phenylalanine ammonia-lyase activity was stimulated in tetraploid but reduced in diploid roots. Diploid contained higher amount of Cu and soluble phenols in both shoots and roots. Sulphur-containing amino acids were stimulated in Cu-exposed shoots independently on ploidy level. Potassium content was more reduced in the diploid cultivar. Our data indicate that induction of phenolic metabolism is faster in diploid cultivar which also contained higher amount of Cu. In this view, polyploidisation is a good tool for the reduction of shoot metal accumulation and growth tolerance to Cu excess. Identity of Czech tetraploid cultivar ‘Unknown’ is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali, N. A., Bernal, M. P., & Ater, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Doležel, J., & Göhde, W. (1995). Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry, 19, 103–106.

    Article  Google Scholar 

  • Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244.

    Article  Google Scholar 

  • dos Santos, W. D., Ferrarese, M. L. L., & Ferrarese-Filho, O. (2006). High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiology and Biochemistry, 44, 511–515.

    Article  Google Scholar 

  • Glücknerová, E., Blažek, Z., & Starý, F. (1965). Characterization of the Czechoslovak approved varieties of camomile (Matricaria chamomilla L.). Československá Farmacie (in Czech), 14, 105–112.

    Google Scholar 

  • Greilhuber, J., Temsch, E. M., & Loureiro, J. C. M. (2007). Nuclear DNA content measurement. In J. Doležel, J. Greilhuber, & J. Suda (Eds.), Flow cytometry with plant cells (pp. 67–101). Weinheim: Wiley.

    Chapter  Google Scholar 

  • Grejtovský, A., & Pirč, R. (2000). Effect of high cadmium concentrations in soil on growth, uptake of nutrients and some heavy metals of Chamomilla recutita (L.) Rauschert. Journal of Applied Botany, 74, 169–174.

    Google Scholar 

  • Guo, W. J., Meetam, M., & Goldsbrough, P. B. (2008). Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology, 146, 1697–1706.

    Article  CAS  Google Scholar 

  • Huang, Y. Z., Hu, Y., & Liu, Y. X. (2009). Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.). Journal of Environmental Sciences-China, 21, 647–653.

    Article  CAS  Google Scholar 

  • Janas, K. M., Amarowicz, R., Zielińska-Tomaszewska, J., Kosińska, A., & Posmyk, M. M. (2009). Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiologiae Plantarum, 31, 587–595.

    Article  CAS  Google Scholar 

  • Janas, K. M., Zielińska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M. M., Aramowicz, R., et al. (2010). The impact of copper ions on growth, lipid peroxidation and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. Journal of Plant Physiology, 167, 270–276.

    Article  CAS  Google Scholar 

  • Jung, C., Maeder, V., Funk, F., Frey, B., Sticher, H., & Frossard, E. (2003). Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant and Soil, 252, 301–312.

    Article  CAS  Google Scholar 

  • Kováčik, J., & Bačkor, M. (2007). Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water, Air, and Soil Pollution, 185, 185–193.

    Article  Google Scholar 

  • Kováčik, J., & Klejdus, B. (2008). Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Reports, 27, 605–615.

    Article  Google Scholar 

  • Kováčik, J., Grúz, J., Bačkor, M., Tomko, J., Strnad, M., & Repčák, M. (2008). Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environmental and Experimental Botany, 62, 145–152.

    Article  Google Scholar 

  • Kováčik, J., Grúz, J., Hedbavny, J., Klejdus, B., & Strnad, M. (2009a). Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. Journal of Agricultural and Food Chemistry, 57, 9848–9855.

    Article  Google Scholar 

  • Kováčik, J., Klejdus, B., & Bačkor, M. (2009b). Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radical Biology & Medicine, 46, 1686–1693.

    Article  Google Scholar 

  • Kováčik, J., Klejdus, B., Hedbavný, J., & Bačkor, M. (2009c). Tolerance of Silene vulgaris to copper: population-related comparison of selected physiological parameters. Environmental Toxicology, (in press, doi:10.1002/tox.20519).

  • Kováčik, J., Klejdus, B., Hedbavny, J., Štork, F., & Bačkor, M. (2009d). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant and Soil, 320, 231–242.

    Article  Google Scholar 

  • Kraljevic-Balalic, M., Mladenov, N., Balalic, I., & Zoric, M. (2009). Variability of leaf cadmium content in tetraploid and hexaploid wheat. Genetika-Belgrade, 41, 1–10.

    Google Scholar 

  • Kumar, P., Tewari, R. K., & Sharma, P. N. (2008). Modulation of copper toxicity-induced oxidative damage by excess of iron supply in maize plants. Plant Cell Reports, 27, 399–409.

    Article  CAS  Google Scholar 

  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., & Kroneck, P. M. H. (2004). Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology, 134, 748–757.

    Article  Google Scholar 

  • Madejon, P., Ramirez-Benitez, J. E., Corrales, I., Barceló, J., & Poschenrieder, C. (2009). Copper-induced oxidative damage and enhanced antioxidant defences in the root apex of maize cultivars differing in Cu tolerance. Environmental and Experimental Botany, 67, 415–420.

    Article  CAS  Google Scholar 

  • Murín, A. (1960). Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technology, 35, 351–353.

    Google Scholar 

  • Nieminen, T. N., Ukonmaanaho, L., Rausch, N., & Shotyk, W. (2007). Biogeochemistry of nickel and its release into the environment. In: Sigel, A., Sigel, H., & Sigel, R. K. O. (Eds.), Metal ions in life sciences. vol. 2. John Wiley & Sons Ltd, pp 1−30.

  • Oravec, V., Oravec, V., Jr., Repčák, M., Šebo, Ľ., Jedinák, D., & Varga, I. (2005). Cultivation experiences in Slovakia. In R. Franke & H. Schilcher (Eds.), Chamomile industrial profiles (pp. 121–139). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Ordoñez, A. A. L., Gomez, J. D., Vattuone, M. A., & Isla, M. I. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry, 97, 452–458.

    Article  Google Scholar 

  • Otto, F. J. (1990). DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In Z. Darzynkiewicz & H. A. Crissman (Eds.), Methods in cell biology (pp. 105–110). San Diego: Academic.

    Google Scholar 

  • Repčák, M., & Krausová, T. (2009). Phenolic glucosides in the course of ligulate flower development in diploid and tetraploid Matricaria chamomilla. Food Chemistry, 116, 19–22.

    Article  Google Scholar 

  • Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.

    Article  CAS  Google Scholar 

  • Shi, J. Y., Wu, B., Yuan, X. F., Cao, Y. Y., Chen, X. C., Chen, Y. X., et al. (2008). An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil, 302, 163–174.

    Article  CAS  Google Scholar 

  • Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18, 321–336.

    Article  CAS  Google Scholar 

  • Tolrà, R. P., Poschenrieder, C., Luppi, B., & Barceló, J. (2005). Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosela L. Environmental and Experimental Botany, 54, 231–238.

    Article  Google Scholar 

  • Vasconcelos, M. T., Azenha, M., & de Freitas, V. (1999). Role of polyphenols in copper complexation in red wines. Journal of Agricultural and Food Chemistry, 47, 2791–2796.

    Article  CAS  Google Scholar 

  • Wang, X., Shi, G. X., Xu, Q. S., & Hu, J. Z. (2007). Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology, 164, 1062–1070.

    Article  CAS  Google Scholar 

  • Weber, M. B., Schat, H., & Der Maarel, T. B. V. (1991). The effect of copper toxicity on the contents of nitrogen compounds in Silene vulgaris (Moench) Garcke. Plant and Soil, 133, 101–109.

    Article  CAS  Google Scholar 

  • Wu, Z. X., Fernandez-Lima, F. A., & Russell, D. H. (2010). Amino acid influence on copper binding to peptides: Cysteine versus arginine. Journal of the American Society for Mass Spectrometry, 21, 522–533.

    Article  CAS  Google Scholar 

  • Xiong, Z. T., Liu, C., & Geng, B. (2006). Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety, 64, 273–280.

    Article  CAS  Google Scholar 

  • Zhou, Z. G., Zhou, J. M., Li, R. Y., Wang, H. Y., & Wang, J. F. (2007). Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant and Soil, 292, 105–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (GA CR 525/07/0338) and partially by the grant of P. J. Šafárik University rector for young scientists (to JK, no. VVGS 1/09-10). We thank BSc. Silvia Malčovská for Fig. 1 editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Kováčik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kováčik, J., Klejdus, B., Hedbavny, J. et al. Copper Uptake, Physiology and Cytogenetic Characteristics in Three Matricaria chamomilla Cultivars. Water Air Soil Pollut 218, 681–691 (2011). https://doi.org/10.1007/s11270-010-0677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0677-5

Keywords

Navigation