Skip to main content
Log in

Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper investigates the changes in bioavailable phosphorus (P) within the hyporheic zone of a groundwater-dominated chalk stream. In this study, tangential flow fractionation is used to investigate P associations with different size fractions in the hyporheic zone, groundwater and surface water. P speciation is similar for the river and the chalk aquifer beneath the hyporheic zone, with ‘dissolved’ P (<10 kDa) accounting for ~90% of the P in the river and >90% in the deep groundwaters. Within the hyporheic zone, the proportion of ‘colloidal’ (<0.45 μm and >10 kDa) and ‘particulate’ (>0.45 μm) P is higher than in either the groundwater or the surface water, accounting for ~30% of total P. Our results suggest that zones of interaction within the sand and gravel deposits directly beneath and adjacent to river systems generate colloidal and particulate forms of fulvic-like organic material and regulate bioavailable forms of P, perhaps through co-precipitation with CaCO3. While chalk aquifers provide some degree of protection to surface water ecosystems through physiochemical processes of P removal, where flow is maintained by groundwater, ecologically significant P concentrations (20–30 μg/L) are still present in the groundwater and are an important source of bioavailable P during baseflow conditions. The nutrient storage capacity of the hyporheic zone and the water residence times of this dynamic system are largely unknown and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abesser, D., Shand, P., Gooddy, D. C., & Peach, D. (2008). The role of alluvial valley deposits in groundwater-surface water exchange in a chalk river. IAHS Publication, 321, 11–20.

    CAS  Google Scholar 

  • Ádám, K., Krogstad, T., Vråle, L., Søvik, A. K., & Jenssen, P. D. (2007). Phosphorus retention in the filter materials shellsand and filtralite P®—Batch and column experiment with synthetic P solution and secondary wastewater. Ecological Engineering, 29, 200–208.

    Article  Google Scholar 

  • Aldiss, D. T., & Royse, K. R. (2002). The geology of the Pang-Lambourn catchment, Berkshire. British Geological Survey Commissioned Report, CR/20/289N.

  • Allen, D. J., Darling, W. G., Gooddy, D. G., Lapworth, D. J., Newell, A. J., Williams, A. T., et al. (2010). Interaction between groundwater, surface water and the hyporheic zone in a chalk stream. Hydrogeology Journal, 18(5), 1125–1141.

    Article  CAS  Google Scholar 

  • Backhus, D. A., Ryan, J. N., Groher, D. M., Macfarlane, J. K., & Gschwend, P. M. (1993). Sampling colloids and colloid-associated contaminants in ground-water. Ground Water, 31, 466–479.

    Article  CAS  Google Scholar 

  • Ballantine, D. J., Walling, D. E., Collins, A. L., & Leeks, G. (2006). Phosphorus storage in fine channel bed sediments. Water, Air, and Soil Pollution, 6, 371–380.

    Article  CAS  Google Scholar 

  • Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.

    Article  Google Scholar 

  • Chen, R. F. (1999). In situ fluorescence measurements in coastal waters. Organic Geochemistry, 30, 397–409.

    Article  Google Scholar 

  • Centre for Ecology & Hydrology, British Geological Survey (2008). UK hydrometric register. A catalogue of river flow gauging stations and observation wells and boreholes in the United Kingdom together with summary hydrometric and spatial statistics. Wallingford, Centre for Ecology & Hydrology, 210pp. (Hydrological Data UK).

  • Cook, P. G., Favreau, G., Dighton, J. C., & Tickell, S. (2003). Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277, 74–88.

    Article  CAS  Google Scholar 

  • Curie, F., Ducharne, A., Sebilo, A., & Bendjoudi, M. (2009). Denitrification in a hyporheic riparian zone controlled by river regulation in the Seine river basin (France). Hydrological Procedure, 23, 655–664.

    Article  CAS  Google Scholar 

  • Dahm, C. N., Grimm, N. B., Marmonier, P., Valett, M., & Vervier, P. (1998). Nutrient dynamics in the interface between surface waters and groundwaters. Freshwater Biology, 40, 427–451.

    Article  Google Scholar 

  • Department of the Environment (1995). Biodiversity: The UK steering group report, Vol 2: Action plans. London: HMSO.

    Google Scholar 

  • Dillon, K., Burnett, W., Kim, G., Chanton, J., Corbett, D. R., Elliott, K., et al. (2003). Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in Florida Keys. Journal of Hydrology, 284, 193–210.

    Article  CAS  Google Scholar 

  • Doucet, F. J., Maguire, L., & Lead, J. R. (2004). Size fractionation of aquatic colloids and particles by cross-flow filtration: Analysis by scanning electron and atomic force microscopy. Analytical Chimica Acta, 522, 59–71.

    Article  CAS  Google Scholar 

  • Eisenreich, S. J., Bannerman, R. T., & Armstrong, D. E. (1975). A simplified phosphorus analytical technique. Environmental Letters, 9, 45–53.

    Article  Google Scholar 

  • Elsbury, K. E., Paytan, A., Ostrom, N. E., Kendall, C., Young, M. B., McLaughlin, K., et al. (2009). Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environmental Science & Technology, 43(9), 3108–3114. doi:10.1021/es8034126.

    Article  CAS  Google Scholar 

  • Eyrolle, F., & Charmasson, S. (2004). Importance of colloids in the transport within the dissolved phase (<450 nm) of artificial radionuclides from the Rhône river towards the Gulf of Lions (Mediterranean Sea). Journal of Environmental Radioactivity, 72, 273–286.

    Article  CAS  Google Scholar 

  • Fernald, A. G., Wigington, P. J., Jr., & Landers, D. H. (2001). Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research, 37(6), 1681–1694.

    Article  Google Scholar 

  • Filella, M., Deville, C., Chanudet, V., & Vignati, D. (2006). Variability of the colloidal molybdate reactive phosphorus concentrations in freshwaters. Water Research, 40, 3185–3192.

    Article  CAS  Google Scholar 

  • Findlay, S., Strayer, D., Goumbala, C., & Gould, K. (1993). Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnology and Oceanography, 38, 1493–1499.

    Article  CAS  Google Scholar 

  • Flynn, N. J., Snook, D. L., Wade, A. J., & Jarvie, H. P. (2002). Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: The River Kennet, a tributary of the Thames. The Science of the Total Environment, 282–283, 143–157.

    Article  Google Scholar 

  • Gooddy, D. C., Darling, W. G., Abesser, C., & Lapworth, D. J. (2006). Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence times in a lowland chalk catchment. Journal of Hydrology, 330, 44–52. doi:10.1016/j.jhydrol.2006.04.011.

    Article  CAS  Google Scholar 

  • Gooddy, D. C., Mathias, S. A., Harrison, I., Lapworth, D. J., & Kim, A. W. (2007). The significance of colloids in the transport of pesticides through chalk. The Science of the Total Environment, 385, 262–271.

    Article  CAS  Google Scholar 

  • Gooseff, M. N., McKnight, D. M., Lyons, W. B., & Blum, A. E. (2002). Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater in the McMuurdo Dry Valleys. Water Resources Research, 38(12), 1279. doi:10.1029/2001WR000834.

    Article  Google Scholar 

  • Grapes, T. R., Bradley, C., & Petts, G. E. (2005). Dynamics of river-aquifer interaction along a chalk stream: The River Lambourn, UK. Hydrological Processes, 19, 2035–2053.

    Article  Google Scholar 

  • Greenwald, M. J., Bowden, W. B., Gooseff, M. N., Zarnetske, J. P., McNamara, J. P., Bradford, J. H., et al. (2008). Hyporheic exchange and water chemistry of two arctic tundra streams of contrasting geomorphology. Journal of Geophysical Research, 113, G02029. doi:10.1029/2007JG000549.

    Article  Google Scholar 

  • Griffiths, J., Binley, A., Crook, N., Nutter, J., Young, A., & Fletcher, S. (2006). Streamflow generation in the Pang and Lambourn catchments, Berkshire, UK. Journal of Hydrology, 330, 71–83.

    Article  Google Scholar 

  • Grimm, N. B., & Fisher, S. G. (1984). Exchange between interstitial and surface water: Implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228.

    Article  CAS  Google Scholar 

  • Guéguen, C., Belin, C., & Dominik, J. (2002). Organic colloid separation in contrasting aquatic environments with tangential flow filtration. Water Research, 36, 1677–1684.

    Article  Google Scholar 

  • Haygarth, P. M., Warwick, M. S., & House, A. W. (1997). Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution. Water Research, 31, 439–448.

    Article  CAS  Google Scholar 

  • Hill, A. R. (1996). Nitrate removal in stream riparian zones. Journal of Environmental Quality, 25, 743–755.

    Article  CAS  Google Scholar 

  • Holman, I. P., Whelan, M. J., Howden, N. J. K., Bellamy, P. H., Willby, N. J., Rivas-Casado, M., et al. (2008). Phosphorus in groundwater—An overlooked contributor to eutrophication? Hydrological Processes, 22, 5121–5127.

    Article  Google Scholar 

  • Holman, I. P., Howden, N. J. K., Bellamy, P., Willby, N., Whelan, M. J., & Rivas-Casado, M. (2010). An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. The Science of the Total Environment, 408, 1847–1857.

    Article  CAS  Google Scholar 

  • Huang, G. H., & Xia, J. (2001). Barriers to sustainable water-quality management. Journal of Environmental Management, 61, 1–23.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Neal, C., Williams, R. J., Neal, M., Wickham, H., Hill, L. K., et al. (2002). Phosphorus sources, speciation and dynamics in a lowland eutrophic chalk river; the River Kennet, UK. The Science of the Total Environment, 282/283, 175–203.

    Article  Google Scholar 

  • Jarvie, H. P., Neal, C., Jürgens, M. D., Sutton, E. J., Neal, M., Wickham, H. D., et al. (2006a). Within-river nutrient processing in chalk streams: The Pang and Lambourn UK. Journal of Hydrology, 330, 101–125.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006b). Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural sources. Science of the Total Environment, 360, 246–253.

    Article  CAS  Google Scholar 

  • Jones, J. B., Fisher, S. G., & Grimm, N. B. (1995). Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology, 76, 942–952.

    Article  Google Scholar 

  • Karageorgiou, K., Paschalis, M., & Anastassakis, G. N. (2007). Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials, 139, 447–452.

    Article  CAS  Google Scholar 

  • Kinniburgh, J. H., & Barnett, M. (2010). Orthophosphate concentrations in the River Thames: Reductions in the past decade. Water Environment Journal, 24, 107–115.

    Article  CAS  Google Scholar 

  • Krause, S., & Bronstert, A. (2007). Water balance simulation and Groundwater—Surface water interactions in a mesoscale lowland river catchment in Northwestern Germany. Hydrological Processes, 21, 169–184.

    Article  Google Scholar 

  • Krause, S., Bronstert, A., & Zehe, E. (2007). Groundwater–surface water interactions in a North German laowland floodplain—Implication for the river discharge dynamics and riparian water balance. Journal of Hydrology, 347, 404–417.

    Article  Google Scholar 

  • Kreller, D. I., Gibson, G., vanLoon, G. W., & Hornton, J. H. (2002). Chemical force microscopy investigation of phosphate adsorption on the surfaces of iron (III) oxyhydroxide particles. Journal of Colloid and Interface Science, 254, 205–213.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., & Kinniburgh, D. G. (2009). An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Computers & Geoscience. doi:10.1016/j.cageo.2008.10.013.

    Google Scholar 

  • Lapworth, D. J., Shand, P., Abesser, C., Darling, W. G., Haria, A. H., Evans, C. D., et al. (2008). Groundwater nitrogen composition and transformation within a moorland catchment, mid-Wales. Science of the Total Environment, 390, 241–254.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Gooddy, D. C., Allen, D., & Old, G. H. (2009). Understanding groundwater, surface water and hyporheic zone biogeochemical processes in a chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research. doi:10.1029/2009JG000921.

    Google Scholar 

  • Liu, R., & Lead, J. R. (2006). Partial validation of cross flow ultrafiltration by atomic force microscopy. Analytical Chemistry, 78, 8105–8112.

    Article  CAS  Google Scholar 

  • McKnight, D. M., Hornberger, G. M., Bencala, K. E., & Boyer, E. W. (2002). In-stream sorption of fulvic acid in an acidic stream: A stream-scale transport experiment. Water Resources Research. doi:10.1029/2001WR0000269.

    Google Scholar 

  • McLaughlin, K., Cade-Menun, B. J., & Paytan, A. (2006). The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources. Estuarine, Coastal and Shelf Science, 70, 499–506.

    Article  Google Scholar 

  • Mikutta, C., Lang, F., & Kaupenjohann, M. (2006). Kinetics of phosphate sorption to polygalacturonar-coated oethite. Soil Science Society of America Journal. doi:10.2136/sssaj2005.0250.

    Google Scholar 

  • Mopper, K., Feng, Z., Bentijen, S. B., & Chen, R. F. (1996). Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Marine Chemistry, 55, 53–74.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Neal, C. (2001). The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters. Hydrology and Earth Systems Science, 5(1), 119–131.

    Article  Google Scholar 

  • Neal, C., & Jarvie, H. P. (2005). Agriculture, community, river eutrophication and the water framework directive. Hydrological Processes, 19, 1895–1901.

    Article  Google Scholar 

  • Neal, C., Neal, M., & Wickham, H. (2000a). Phosphate measurements in natural waters: Two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. The Science of the Total Environment, 251/252, 511–522.

    Article  CAS  Google Scholar 

  • Neal, C., Neal, M., Wickham, H., & Harrow, M. (2000b). The water quality of a tributary of the Thames, the Pang, Southern England. The Science of the Total Environment, 251(252), 459–475.

    Article  Google Scholar 

  • Neal, C., Neal, M., Leeks, G. J. L., Old, G. H., Hill, L., & Wickham, H. (2006). Suspended sediment and particulate phosphorus in surface waters of the upper Thames Basin, UK. Journal of Hydrology, 330, 142–154.

    Article  CAS  Google Scholar 

  • Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36, 742–746.

    Article  CAS  Google Scholar 

  • Palmer-Felgate, E. J., Jarvie, H. P., Williams, R. J., Mortimer, R. J. G., Loewenthal, M., & Neal, C. (2008). Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal of Hydrology, 351, 87–97.

    Article  CAS  Google Scholar 

  • Pretty, J. L., Hildrew, A. G., & Trimmer, M. (2006). Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater-fed chalk stream. Journal of Hydrology, 330, 84–100.

    Article  CAS  Google Scholar 

  • R Development Core Team (2010). The R foundation for statistical computing. Vienna: Vienna University of Technology.

    Google Scholar 

  • Rassam, D. W., Fellows, C. S., De Hayr, R., Hunter, H., & Bloesch, P. (2006). The Hydrology of riparian buffer zones; two case studies in an ephemeral and perennial stream. Journal of Hydrology, 325, 308–324.

    Article  Google Scholar 

  • Ross, J. M., & Sherrell, R. M. (1999). The role of colloids in trace metal transport and adsorption behavior in New Jersey Pinelands streams. Limnology and Oceanography, 44, 1019–1034.

    Article  CAS  Google Scholar 

  • Ryan, J. N., & Gschwend, P. M. (1990). Colloid mobilisation in two Atlantic coastal plain aquifers: Field studies. Water Resources Research, 26, 307–322.

    Article  CAS  Google Scholar 

  • Sear, D. A., Armitage, P. D., & Dawson, F. H. (1999). Groundwater dominated rivers. Hydrological Processes, 13, 255–276.

    Article  Google Scholar 

  • Shand, C. A., Smith, S., Edwards, A. C., & Fraser, A. R. (2000). Distribution of phosphorus in particulate, colloidal and molecular-sized fractions of soil solutions. Water Research, 34, 1278–1284.

    Article  Google Scholar 

  • Sondergaard, M., & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44, 1089–1094.

    Article  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254.

    Article  CAS  Google Scholar 

  • Stumm, W. (1977). Chemical interaction in particle separation. Environmental Science & Technology, 11, 1066–1070.

    Article  CAS  Google Scholar 

  • Vervier, P., Bonvallet-Garay, S., Sauvage, S., Valett, H. M., & Sanchez-Perez, J.-M. (2009). Influence of hyporheic zone on phosphorus dynamics of a large gravel-bed river, Garonne River, France. Hydrological Processes, 23, 1801–1812.

    Article  CAS  Google Scholar 

  • Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate phosphorus sources in catchments. Journal of Hydrology, 350, 274–289.

    Article  CAS  Google Scholar 

  • Water Framework Directive, Council of European Communities. Establishing a framework for community action in the field of water policy (WFD;2000/60/EC). Official Journal of EC L327, December 2000.

  • Wheater, H. S., & Peach, D. (2004). Developing interdisciplinary science for integrated catchment management: The UK Lowland Catchment Research (LOCAR) programme. International Journal of Water Resources Development, 20, 369–385.

    Article  Google Scholar 

  • Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Groundwater and surface water—A single resource. US Geological Survey Circular 1139. US Geological Survey.

  • Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: A review. The Science of the Total Environment, 400, 379–395.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the analytical work carried out by H. Wickham (CEH) and thank P. Naden and G. H. Old (CEH) for the use of the fluorescence spectrometer. The authors thank Debbie Allen (BGS) for assistance in carrying out fieldwork at Westbrook Farm. The work was funded by the Natural Environment Research Council (NERC). This paper is published with the permission of the Executive Director, British Geological Survey (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan J. Lapworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapworth, D.J., Gooddy, D.C. & Jarvie, H.P. Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream. Water Air Soil Pollut 218, 213–226 (2011). https://doi.org/10.1007/s11270-010-0636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0636-1

Keywords

Navigation