Skip to main content

Advertisement

Log in

Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2012

Abstract

A wide variety of veterinary antibiotics (VAs) has been detected in environmental water samples, and this is of potential environmental concern due to their adverse effects. In particular, the potential for development of antibiotic-resistant bacteria has raised social concerns leading to intensive investigation regarding the influence of antibiotics on human and ecosystem health. One of the main sources of antibiotic effluence to the environment is livestock manures that often contain elevated levels of VAs that survive normal digestive procedures following medication in animal husbandry because unlike human waste, waste generated on farms does not undergo tertiary wastewater treatment, and consequently, the concentration of antibiotics entering the environment is expected to be larger from farming practices. Animal feed is often supplemented with VAs to promote growth and parasite resistance in the medicated animals, and this practice typically resulted in higher use of VAs and consequential excretion from livestock through urine and feces. The excretion rate varied depending on the type of VA used with around 75, 90, and 50–100% being excreted for chlortetracycline, sulfamethazine, and tyolsin, respectively. The excreted VAs that initially present in livestock manures were degraded more than 90% when proper composting practice was used, and hence, this can be employed as a management strategy to decrease VA environmental loads. The reduction of VA concentrations during composting was mainly attributed to abiotic processes rather than biotic degradation. The VAs released to soils by the application of manure and manure-based composts can be degraded or inactivated to various degrees through abiotic process such as adsorption to soil components. Depending on the antibiotic species and soil properties, residues can be transferred to groundwater and surface water through leaching and runoff and can potentially be taken up by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arikan, O. A. (2008). Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. Journal of Hazardous Materials, 158, 485–490.

    Article  CAS  Google Scholar 

  • Arikan, O. A., Mulbry, W., & Rice, C. (2009). Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials, 164, 483–489.

    Article  CAS  Google Scholar 

  • Aust, M.-O., Godlinski, F., Travis, G. R., Hao, X., McAllister, T. A., Leinweber, P., et al. (2008). Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental Pollution, 156, 1243–1251.

    Article  CAS  Google Scholar 

  • Baguer, A. J., Jensen, J., & Krogh, P. H. (2000). Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere, 40, 751–757.

    Article  CAS  Google Scholar 

  • Bao, Y., Zhou, Q., Guan, L., & Wang, Y. (2009). Depletion of chlortetracycline during composting of aged and spiked manures. Waste Management, 29, 1416–1423.

    Article  CAS  Google Scholar 

  • Benbrook, C.M. (2002). Antibiotic drug use in U.S. aquaculture. http://www.iatp.org. Accessed 27 July 2009.

  • Berger, K., Peterson, B., & Buening-Pfaune, H. (1986). Persistence of drugs occurring in liquid manure in the food chain. Archiv für Lebensmittelhygiene, 37, 99–102.

    Google Scholar 

  • Blackwell, P. A., Kay, P., & Boxall, A. B. A. (2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere, 67, 292–299.

    Article  CAS  Google Scholar 

  • Blackwell, P. A., Kay, P., Ashauer, R., & Boxall, A. B. A. (2009). Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere, 75, 13–19.

    Article  CAS  Google Scholar 

  • Bouwman, G. M., & Reus, J. A. W. A. (1994). Persistence of medicines in manure. Centre for Agriculture and Environment, CLM, 163, 26.

    Google Scholar 

  • Boxall, A. B. A., Kolpin, D. W., Halling-Srensen, B., & Tolls, J. (2003). Are veterinary medicines causing environmental risks? Environmental Science and Technology, 37, 286–294.

    Article  Google Scholar 

  • Boxall, A. B. A., Johnson, P., Smith, E. J., Sinclair, C. J., Stutt, E., & Levy, L. S. (2006). Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry, 54, 2288–2297.

    Article  CAS  Google Scholar 

  • Burkhardt, M., Stamm, C., Waul, C., Singer, H., & Muller, S. (2005). Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. Journal of Environmental Quality, 34, 1363–1371.

    Article  CAS  Google Scholar 

  • CEC. (1998a). Council regulation 2788/98. Official Journal of the European Communities Legislation, L347, 32.

    Google Scholar 

  • CEC. (1998b). Council Regulation 2821/98. Official Journal of the European Communities Legislation, L351, 4.

    Google Scholar 

  • Chadwick, D. R., & Chen, S. (2002). Manures. In P. M. Haygarth & S. C. Jarris (Eds.), Agriculture, hydrology and water quality (pp. 57–82). Wallington, UK: CABI Publishing.

    Chapter  Google Scholar 

  • DANMAP, (2005). DANMAP 2005-Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. http://www.danmap.org/pdfFiles/Danmap_2005.pdf. Accessed 27 July 2009.

  • De Liguoro, M., Cibin, V., Capolongo, F., Halling-Srensen, B., & Montesissa, C. (2003). Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 52, 203–212.

    Article  Google Scholar 

  • Dolliver, H., Kumar, K., & Gupta, S. (2007). Sulfamethazine uptake by plants from manure-amended soil. Journal of Environmental Quality, 36, 1224–1230.

    Article  CAS  Google Scholar 

  • Dolliver, H., Gupta, S., & Noll, S. (2008). Antibiotic degradation during manure composting. Journal of Environmental Quality, 37, 1245–1253.

    Article  CAS  Google Scholar 

  • EMEA, (1994–2002). Tylosin summary report (Parts 1–5). Part 1:http://www.emea.europa.eu/pdfs/vet/mrls/tylosin1.pdf; Part 2: http://www.emea.europa.eu/pdfs/vet/mrls/tylosin2.pdf; Part 3: http://www.emea.europa.eu/pdfs/vet/mrls/020597en.pdf; Part 4: http://www.emea.europa.eu/pdfs/vet/mrls/073200en.pdf; Part 5: http://www.emea.europa.eu/pdfs/vet/mrls/082902en.pdf. Accessed 19 Sept 2009.

  • Feinman, S. E., & Matheson, J. C., III. (1978). Draft environmental impact statement subtherapeutic antibacterial agents in animal feeds. Rockville, MD: Bureau of Veterinary Medicine, Food and Drug Administration.

    Google Scholar 

  • Gartiser, S., Urich, E., Alexy, R., & Kummerer, K. (2007). Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere, 66, 1839–1848.

    Article  CAS  Google Scholar 

  • Gavalchin, J., & Katz, S. E. (1994). The persistence of fecal-borne antibiotics in soil. Journal of AOAC International, 77, 481–485.

    CAS  Google Scholar 

  • Gonsalves, D., & Tucker, D. P. H. (1977). Behavior of oxytetracycline in Florida citrus and soils. Archives of Environmental Contamination and Toxicology, 6, 515–523.

    Article  CAS  Google Scholar 

  • Gu, C., Karthikeyan, K. G., Sibley, S. D., & Pedersen, J. A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 66, 1494–1501.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lutzhoft, H. C. H., & Jorgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B., Jensen, J., Tjornelund, J., & Montforts, M. H. M. M. (2001). Worstcase estimations of predicted environmental soil concentrations (PEC) of selected veterinary antibiotics and residues used in Danish agriculture. In K. Kummerer (Ed.), Pharmaceuticals in the Environment (pp. 143–157). Berlin: Springer Verlag.

    Google Scholar 

  • Halling-Sørensen, B., Sengeløv, G., & Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 42, 263–271.

    Article  Google Scholar 

  • Halling-Sorensen, B., Jacobsen, A. M., Jensen, J., Sengelov, G., Vaclavik, E., & Ingerslev, F. (2005). Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in Southern Denmark. Environmental Toxicology and Chemistry, 24, 802–810.

    Article  CAS  Google Scholar 

  • Hamscher, G., Abu-Quare, A., Sczesny, S., Hoper, H., & Nau, H. (2000). Determination of tetracyclines and tylosin in soil and water samples from agricultural areas in Lower Saxony. In L. A. van Ginkel & A. Ruiter (Eds.), The Euroside IV Conference (pp. 522–526). Bilthoven: National Institute of Public Health and the Environment (RIVM).

    Google Scholar 

  • Hamscher, G., Sczesny, S., Hoper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509–1518.

    Article  CAS  Google Scholar 

  • Hartlieb, N., Ertunc, T., Schaeffer, A., & Klein, W. (2003). Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environmental Pollution, 126, 83–91.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K.-L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109–118.

    Article  CAS  Google Scholar 

  • Hoper, H., Kues, J., Nau, H., & Hamscher, G. (2002). Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Boden. Bodenschutz in Germany, 4, 141–148.

    Google Scholar 

  • JEFCA, (2006). Summary of evaluations performed by the JEFCA (1956–2005) (1st through 65th meetings). Joint Food and Agriculture Organization of the United Nations and World Health Organization Expert Committee on Food Additives, Rome; WHO, Geneva, Switzerland.

  • JETACAR. (1999). The use of antibiotics in food-producing animals: antibiotic resistance bacteria in animals and humans. Canberra: Commonwealth department of health and aged care.

    Google Scholar 

  • Jjemba, P. K. (2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture Ecosystems and Environment, 93, 267–278.

    Article  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2004). Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 23, 1136–1144.

    Article  CAS  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2005a). Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere, 60, 497–507.

    Article  CAS  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2005b). A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environmental Pollution, 134, 333–341.

    Article  CAS  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2005c). Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere, 59, 951–959.

    Article  CAS  Google Scholar 

  • KFDA, (2006). Annual report of NARMP 4:47–58.

    Google Scholar 

  • Khachatourians, G. G. (1998). Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal, 159, 1129–1136.

    CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kolz, A. C., Moorman, T. B., Ong, S. K., Scoggin, K. D., & Douglass, E. A. (2005). Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environment Research, 77, 49–56.

    Article  CAS  Google Scholar 

  • Kreuzig, R., & Holtge, S. (2005). Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environmental Toxicology and Chemistry, 24(4), 771–776.

    Article  CAS  Google Scholar 

  • Kreuzig, R., Holtge, S., Brunotte, J., Berenzen, N., Wogram, J., & Schulz, R. (2005). Test-plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environmental Toxicology and Chemistry, 24, 777–781.

    Article  CAS  Google Scholar 

  • Kuhne, M., Ihnen, D., Moller, G., & Agthe, O. (2000). Stability of tetracycline in water and liquid manure. Journal of Veterinary Medicine, Series A, 47, 379–384.

    Article  CAS  Google Scholar 

  • Kulshrestha, P., Giese, R. F., Jr., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science and Technology, 38, 4097–4105.

    Article  CAS  Google Scholar 

  • Kumar, K., Thompson, A., Singh, A. K., Chander, Y., & Gupta, S. C. (2004). Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples. Journal of Environmental Quality, 33, 797–797.

    Article  Google Scholar 

  • Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y., & Rosen, C. J. (2005a). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of Environmental Quality, 34, 2082–2085.

    Article  CAS  Google Scholar 

  • Kumar, K., Gupta, S. C., Chander, Y., & Singh, A. K. (2005b). Antibiotic use in agriculture and their impact on the terrestrial environment. Advances in Agronomy, 87, 1–54.

    Article  CAS  Google Scholar 

  • Langhammer, J.P. (1989). Untursuchungen zum Verbleib antimikrobiell wirksamer Aezneistoffe als in Gulle und im landwirtschaftlichen Umfeld. Universitat Bonn, Germany (in German).

  • Loke, M.-L., Tjornelund, J., & Halling-Sorensen, B. (2002). Determination of the distribution coefficient (logK d) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 48, 351–361.

    Article  CAS  Google Scholar 

  • Lunestad, B. T., & Goksoyr, J. (1990). Reduction in the antibacterial effect of oxytetracycline in sea water complex formation with magnesium and calcium. Diseases of aquatic organisms, 9, 67–72.

    Article  CAS  Google Scholar 

  • Martin, S. R. (1979). Equilibrium and kinetic studies on the interaction of tetracyclines with calcium and magnesium. Biophysical Chemistry, 10, 319–326.

    Article  CAS  Google Scholar 

  • Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148, 570–579.

    Article  CAS  Google Scholar 

  • Migliore, L., Brambilla, G., Casoria, P., Civitareale, C., Cozzolino, S., & Gaudio, L. (1996). Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agriculture, Ecosystems & Environment, 60, 121–128.

    Article  CAS  Google Scholar 

  • Montforts, M.H. (1999). Environmental risk assessment for veterinary medicinal products. Part 1: Other than GMO-containing and immunological products. RIVM report 601300 001, N120. National Institute of Public Health and the Environment, Bilthoven.

  • NORM/NORM-VET, (2005). Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromso/Oslo 2006. ISSN: 1502-2307.

  • Patterson, R., DeSwarte, R., Greenberger, P., Grammer, L., Brown, J., & Choy, C. A. (1995). Drug allergy and protocols for management of drug allergies. Providence: OceanSide Publisher.

    Google Scholar 

  • Pawelzick, H.T., Hoper, H., Nau, H., Hamscher, G. (2004). A survey of the occurrence of various tetracyclines and sulfamethazine in sandy soils in northwestern Germany fertilized with liquid manure. In SETAC Euro 14th Annual Meeting. pp 18-22, Prague, Czech Republic.

  • Rabolle, M., & Spliid, N. H. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40, 715–722.

    Article  CAS  Google Scholar 

  • RDA. (2007). Treatment of livestock manures as resources. Suwon: RDA.

    Google Scholar 

  • Renner, R. (2002). Do cattle growth hormones pose an environmental risk? Environmental Science and Technology, 36, 194A–197A.

    Article  CAS  Google Scholar 

  • Rose, M. D., & Bygrave, W. H. H. (1996). The effect of cooking on veterinary drug residues in food: IV. Oxytetracycline. Food Additives and Contaminants, 13, 275–286.

    Article  CAS  Google Scholar 

  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.

    Article  CAS  Google Scholar 

  • SAV, (2005). SVARM 2005 Swedish veterinary antimicrobial resistance monitoring. available at http://www.sva.se/upload/pdf/Tj%c3%a4nster%20och%20produkter/Trycksaker/svarm2005.pdf. Accessed 27 July 2009.

  • Seborg, T., Ingerslev, F., & Halling-Srensen, B. (2004). Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water. Chemosphere, 57, 1515–1524.

    Article  Google Scholar 

  • Seo, Y. H., Choi, J. K., Kim, S. K., Min, H. K., & Jung, Y. S. (2007). Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment. Korean Journal of Soil Science and Fertilizer, 40(1), 43–50.

    CAS  Google Scholar 

  • Sithole, B. B., & Guy, R. D. (1987). Models for tetracycline in aquatic environments. Water, Air, & Soil Pollution, 32, 315–321.

    Article  CAS  Google Scholar 

  • Spaepen, K. R. I., Van Leemput, L. J. J., Wislocki, P. G., & Verschueren, C. (1997). A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environmental Toxicology and Chemistry, 16, 1977–1982.

    Article  CAS  Google Scholar 

  • Ter Laak, T. L., Gebbink, W. A., & Tolls, J. (2006a). The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology and Chemistry, 25(4), 904–911.

    Article  Google Scholar 

  • Ter Laak, T. L., Gebbink, W. A., & Tolls, J. (2006b). Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 25(4), 933–941.

    Article  Google Scholar 

  • Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils—a review. Journal of Plant Nutrition and Soil Science, 166, 145–167.

    Article  CAS  Google Scholar 

  • US Composting Council, (2000). Field guide to compost use. http://www.compostingcouncil.org/pdf/FGCU3.pdf. Accessed 25 May 2009.

  • VICH, (2000). Environmental impact assessment (EIAs) for veterinary medicinal products (VMPs)—phase I. http://www.vichsec.org/pdf/2000/Gl06_st7.pdf. Accessed 03 Mar 2010.

  • VMD, (2006). Sales of antimicrobial products authorized for use as veterinary medicines, antiprotozoals, antifungals, growth promoters and coccidiostats, in the UK in 2005. http://www.vmd.gov.uk/Publications/Antibiotic/salesanti05.pdf. Accessed 27 July 2009.

  • Watts, C. D., Crathorne, B., Fielding, M., & Killops, S. D. (1982). Nonvolatile organic compounds in treated waters. Environmental Health Perspectives, 46, 87–89.

    Article  CAS  Google Scholar 

  • Webb, K. E., & Fontenot, J. P. (1975). Medicinal drug residues in broiler litter and tissues from cattle fed litter. Journal of Animal Science, 41, 1212–1217.

    Google Scholar 

  • Winckler, C., & Grafe, A. (2001). Use of veterinary drugs in intensive animal production. Journal of Soils and Sediments, 1, 66–70.

    Article  CAS  Google Scholar 

  • Witte, W. (1998). Medical consequences of antibiotic use in agriculture. Science, 279, 996–996.

    Article  CAS  Google Scholar 

  • Xian-Gang, H., Yi, L., Qi-xing, Z., & Lin, X. (2008). Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chinese Journal of Analytical Chemistry, 36(9), 1162–1166.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the 2009 Post Doctoral Course Program of the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Rae Kim.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11270-012-1316-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KR., Owens, G., Kwon, SI. et al. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut 214, 163–174 (2011). https://doi.org/10.1007/s11270-010-0412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0412-2

Keywords

Navigation