Skip to main content
Log in

Copper and Chromium Alter Life Cycle Variables and the Equiproportional Development of the Freshwater Copepod Notodiaptomus conifer (SARS)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Recent studies have shown that the lower basin of the Salado River is highly polluted with copper and chromium. In order to evaluate the effect of those metals on Notodiaptomus conifer, a representative calanoid copepod, we carried out two (acute and chronic) experimental assays. In the first one, the 24- and 48-h EC50 values were determined in nauplii and adults. Chronic assays were conducted to evaluate the time of development for nauplii, time of development for each copepodite stage, total development time, growth, number of ovigerous females, fecundity, and time required to produce the first egg sac. Additionally, the effect of those metals on the equiproportional model proposed for copepods was evaluated. Acute experiments reveled that juveniles were more sensible than adults. Although growth was not seriously affected by metal exposition, development time was delayed and reproductive variables were altered with the increase of metal concentrations. The deviation from the equiproportional model proposed for copepods proved to be a useful parameter to provide relevant information on toxicity of both metals along development time. In comparison with other zooplanktonic species, the highest sensitivity of N. conifer to copper and chromium makes it a suitable bioindicator in ecotoxicological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan, D. J., & Daniels, R. E. (1982). Life table evaluation of chronic exposure of Eurytemora affinis (Copepoda) to kepone. Marine Biology, 66, 179–184.

    Article  CAS  Google Scholar 

  • Andersen, H. R., Wollenberger, L., Halling-Sorensen, B., & Ole Kusk, K. (2001). Development of copepod nauplii to copepodites—A parameter for chronic toxicity including endocrine disruption. Environmental Toxicology and Chemistry, 20(12), 2821–2829.

    CAS  Google Scholar 

  • Barata, C., Porte, C., & Baird, D. J. (2004). Experimental designs to assess endocrine disrupting effects in invertebrates: A review. Ecotoxicology, 13, 511–517.

    Article  CAS  Google Scholar 

  • Baudouin, M. F., & Scoppa, P. (1974). Acute toxicity of various metals to freshwater zooplankton. Bulletin of Environmental Contamination and Toxicology, 12(6), 745–751.

    Article  CAS  Google Scholar 

  • Belanger, S. E., Farris, J. L. & Cherry, D. S. (1989). Effects of diet, water hardness, and population source on acute and chronic copper toxicity to Ceriodaphnia dubia. Archives of Environmental Contamination and Toxicology, 18, 601–611.

    Google Scholar 

  • Bellavere, C., & Gorbi, J. (1981). A comparative analysis of acute toxicity of chromium, copper and cadmium to Daphnia magna, Biomphalaria glabrata, and Brachydanio rerio. Environmental Technology, 2(3), 119–128.

    Article  CAS  Google Scholar 

  • Blades, P. I., & Youngbluth, M. J. (1980). Morphological, physiological, and behavioral aspects of mating in calanoid copepods. In W. C. Kerfoot (Ed.), Evolution and ecology of zooplankton communities (pp. 39–51). New Hampshire: University Press of New England.

    Google Scholar 

  • Brown, R. J., Rundle, S. D., Hutchinson, T. H., Williams, T. D., & Jones, M. B. (2002). A copepod life-cycle test and growth model for interpreting the effects of lindane. Aquatic Toxicology, 63, 1–11.

    Article  Google Scholar 

  • Bryan, G. W., & Hummerstone, L. G. (1971). Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of heavy metals. 1. General observations and adaptation to copper. Journal of the Marine Biological Association of the UK, 51(4), 845–863.

    Article  CAS  Google Scholar 

  • Carlotti, F., & Sciandra, A. (1989). Population dynamics model of Euterpina acutifrons (Copepoda: Harpacticoida) coupling individual growth and larval development. Marine Ecology Progress Series, 56, 225–242.

    Article  Google Scholar 

  • Castañé, P. M., Topalián, M. L., Cordero, R. R., & Salibián, A. (2003). Influencia de la especiación de los metales pesados en medio acuático como determinante de su toxicidad. Revista de Toxicología, 20, 13–18.

    Google Scholar 

  • Ceresoli, N., & Gagneten, A. M. (2003). Efectos del efluente de curtiembre sobre Ceriodaphnia dubia (Crustacea, Cladocera) en condiciones experimentales. Interciencia, 28(8), 469–475.

    Google Scholar 

  • Corkett, C. J. (1984). Observations on development in copepods. Custaceana (Suppl.), 7, 150–153.

    Google Scholar 

  • Corkett, C. J., & McLaren, I. A. (1970). Relationships between development rate of eggs and older stages of copepods. Journal of the Marine Biological Association of the UK, 50, 161–168.

    Article  Google Scholar 

  • Dave, G. (1984). Effects of copper on growth, reproduction, survival and haemoglobin in Daphnia magna. Comparative Biochemistry and Physiology, 78(2), 439–443.

    Article  CAS  Google Scholar 

  • Dodson, S., & Hanazato, T. (1995). Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environmental Health Perspectives, 103(Suppl 4), 7–11.

    Article  CAS  Google Scholar 

  • Dussart, B. H. (1984). Some Crustacea Copepoda from Venezuela. Hydrobiologia, 113, 25–67.

    Article  Google Scholar 

  • Eisler, R. (1986). Chromium hazards to fish, wildlife, and invertebrates: A synoptic review. U.S. Fish and Wildlife Service Biol Rep, 85(1.6), 60.

    Google Scholar 

  • Ewell, W., Gorsuch, J., Kringle, R., Robillard, K., & Spiegel, R. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5, 831–840.

    Article  CAS  Google Scholar 

  • Fargasová, A. (1994). Comparative toxicity of five metals on various biological subjects. Bulletin of Environmental Contamination and Toxicology, 53, 317–324.

    Article  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. Third edition, Cambridge University Press, 333 p.

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: A review. Water, Air, and Soil Pollution, 44(1–2), 143–158.

    Article  CAS  Google Scholar 

  • Forbes, V. E., & Calow, P. (1996). Costs of living with contaminants: Implications for assessing low-level exposures. Northeast Regional Environmental Public Health Center. MA: Belle Newsletter, 4, 1–8.

    Google Scholar 

  • Fox, C. W., & Czesak, M. E. (2000). Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology, 45, 341–369.

    Article  CAS  Google Scholar 

  • Fox, C. W. (2000). Natural selection on seed-beetle egg size in nature and the laboratory: Variation among environments. Ecology, 81, 3029–3035.

    Article  Google Scholar 

  • Gagneten, A. M., & Vila, I. (2001). Effects of Cu+2 and pH on the fitness of Ceriodaphnia dubia (Richard 1894) (Crustacea, Cladocera) in microcosm experiments. Environmtal Toxicology, 16(5), 428–438.

    Article  CAS  Google Scholar 

  • Gagneten, A. M., & Paggi, J. C. (2009). Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 198, 317–334.

    Article  CAS  Google Scholar 

  • Gagneten, A. M., Plá, R. R., Regaldo, L., & Paggi, J. C. (2009). Assessment of bioconcentration factor of chromium by instrumental neutron activation analysis in Argyrodiaptomus falcifer Daday, a subtropical freshwater copepod. Water, Air and Soil Pollution, 204, 133–138.

    Article  CAS  Google Scholar 

  • Gagneten, A. M., Gervasio, S., & Paggi, J. C. (2007). Heavy metal pollution and eutrophication in the Lower Salado River Basin (Argentina). Water, Air, and Soil Pollution, 178, 335–349.

    Article  CAS  Google Scholar 

  • Gentile, J. H., Gentile, S. M., Hairston, N. G., Jr., & Sullivan, B. K. (1982). The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia. Hydrobiologia, 93(1–2), 179–187.

    Article  CAS  Google Scholar 

  • Gorbi, G., Invidia, M., Zanni, C., Torelli, A., & Corradi, M. G. (2004). Bioavailability, bioaccumulation and tolerance of chromium: Consequences in the food chain of freshwater ecosystems. Annali de Chimica, 94(7–8), 505–513.

    Article  CAS  Google Scholar 

  • Hart, R. C. (1990). Copepod post-embryonic durations: pattern, conformity, and predictability. The realities of isochronal and equiproportional development, and trends in the opepodid–naupliar duration ratio. Hydrobiologia, 206(3), 175–206.

    Google Scholar 

  • Hart, R. C. (1994). Equiproportional temperature-duration responses, and thermal influences on distribution and species switching in the copepods Metadiaptomus meridiamus and Tropodiaptomus spectabilis. Hydrobiologia, 272, 163–183.

    Article  Google Scholar 

  • Hart, R. C. (1996). Naupliar and copepodite growth and survival of two freshwater calanoids at various food levels: Demographic contrasts, similarities and food needs. Limnology and Oceanography, 41, 648–658.

    Article  Google Scholar 

  • Hart, R. C. (1998). Copepod equiproportional development: Experimental confirmation of its independence of food supply level, and a conceptual model accounting for apparent exceptions. Hydrobiologia, 380, 77–85.

    Article  Google Scholar 

  • Hutchinson, T. H. (2002). Reproductive and development effect of endocrine disrupters in invertebrates: In vitro and in vivo approaches. Toxicology Letters, 131, 75–81.

    Article  CAS  Google Scholar 

  • Hutchinson T. H., Williams, T. D. & Eales, G. (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Marine Environmental Research, 38(4), 275–290.

    Google Scholar 

  • InfoStat, version 2004. Grupo Infostat, FCA. Universidad Nacional de Córdoba. Primera Edición, Editorial Brujas, Argentina.

  • José de Paggi, S. (1997). Efecto de los pesticidas sobre el zooplancton de las aguas continentales: Análisis revisivo. FABICIB, 1, 103–114.

    Google Scholar 

  • Kenaga, E. (1982). Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environmental Toxicology and Chemistry, 1(4), 347–358.

    Article  CAS  Google Scholar 

  • Khangarot, B. S. (1989). Investigations of correlation between physicochemical properties of metals and their toxicity to the waterflea Daphnia magna Straus Ecotox. Environmental Safety, 18(2), 109–120.

    Article  CAS  Google Scholar 

  • Koivisto, S. (1995). Is Daphnia an ecologically representative zooplankton species in toxicity tests? Environmental Pollution, 90(2), 263–267.

    Article  CAS  Google Scholar 

  • Landry, M. R. (1983). The development of marine calanoid copepods with comments on the isochronal rule. Limnology and Oceanography, 28, 614–624.

    Article  Google Scholar 

  • Maier, G. (1995). Mating frequency and inter-specific mating in some freshwater cyclopoid copepods. Oecologia, 101, 245–250.

    Article  Google Scholar 

  • Mount, D. I. & Stephan, C. E. (1967). A method for establishing acceptable toxicant limit for fish? malathion and butoxyethanol ester of 2,4-D. Transactions of the American Fisheries Society, 96, 185–193.

    Google Scholar 

  • National Hidric Resources Secretary (2003). Desarrollo de Niveles Guía Nacionales de Calidad de Agua ambiente correspondiente a Cobre. Argentina.

  • Norber-King, T. J. (1989). An evaluation of the fathead minnow seven-day subchronic tests for estimating chronic toxicity. Environmental Toxicology and Chemistry, 8, 1075–1089.

    Google Scholar 

  • Persoone, G., Van del Vel, A., Van Steertegem, M., & De Nayer, B. (1989). Predictive value of laboratory tests with aquatic invertebrates: influences of experimental conditions. Aquat. Toxicol. 14, 149–166. En: Pawlisz, A.V., R.A. Kent, U.A. Schneider, & C. Jefferson (1997). Canadian water quality guidelines for chromium. Environmental Toxicology and Water Quality 12, pp. 185–193.

  • Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120, 497–507.

    Article  CAS  Google Scholar 

  • Ringuelet, R. A. (1958). Los Crustáceos Copépodos De Las Aguas Continentales De La República Argentina. Sinópis Sistematica, Contribuciones Científicas, Facultad de Ciencias Exactas, Físicas y Naturales, UBA 1(2), pp. 1–126.

  • Sibly, R. M., & Calow, P. (1986). Physiological ecology. Oxford: Blackwell Science. 179.

    Google Scholar 

  • Spehar, R. L., & Fiandt, J. T. (1986). Acute and chronic effects on water quality criteria-based metal mixtures on three aquatic species. Environmental Toxicology and Chemistry, 5, 917–931. En Pawlisz, A.V., R.A. Kent, U.A. Schneider and C.Jefferson. 1997. Canadian Water Quality Guidelines for Chromium. Environmental Toxicology and Water Quality, 12, 185–193.

  • Stearns, S. C. & Kawecki, T. J. (1994). Fitness Sensitivity and the Canalization of Life-History Traits Evolution 48(5), 1438–1450.

    Google Scholar 

  • Sullivan, B. K., Buskey, E., Miller, D. C., & Ritacco, P. J. (1983). Effects of copper and cadmium on growth, swimming and predator avoidance in Eurytemora affinis (Copepoda). Marine Biology, 77, 299–306.

    Article  CAS  Google Scholar 

  • Sunda, W. G., Teste, P. A., & Huntsman, S. A. (1987). Effects of cupric and zinc ion activities on the survival and reproduction of marine copepods. Marine Biology, 94, 203–210.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5a ed. US Environmental Protection Agency, Office of Water (4303T). NW. Washington, DC 20460. EPA-821-R-02-012, 266 pp.

  • USEPA- Region II USACE- New York District, USDOE-BNL (1999). Fast track dredged material decontamination demonstration for the port of New York and New Jersey. Report to Congress on the Water Resources and Development Acts of 1990 (Section 412), 1992 (Section405C), and 1996 (Section 226). EPA 000-0-99000. Washington, DC, 65 pp.

  • Uye, S. (1988). Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia, 167(168), 285–293.

    Article  Google Scholar 

  • Vasela, S., & Vijverberg, J. (2007). Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species. Aquatic Ecology, 41, 67–73.

    Article  Google Scholar 

  • Verriopoulos, G., & Moraitu-Apostolopoulou, M. (1982). Differentiation of the Sensitivity to copper and cadmium in different life stages of a copepod. Marine Pollution Bulletin, 13(4), 123–125.

    Article  CAS  Google Scholar 

  • Walker, G. H. (1990). Kinetic models to predict bioaccumulation of pollutants. Functional Ecology, 4, 295–301.

    Article  Google Scholar 

  • Winner, R. W., & Farrell, M. P. (1976). Acute and chronic toxicity of copper to four species of Daphnia. Journal of the Fisheries Resources Board of Canada, 33, 1685–1691.

    CAS  Google Scholar 

  • Wong, C. K., & Pak, A. P. (2004). Acute and subchronic toxicity of the heavy metals copper, chromium, nickel and zinc, individually and in mixture, to the freshwater copepod Mesocyclops pehpeiensis. Bulletin of Environmental Contamination and Toxicology, 73, 190–196.

    Article  CAS  Google Scholar 

  • Yen, J., Sanderson, B., Strickler, J. R., & Okubo, A. (1991). Feeding currents and energy dissipation by Euchaeta rimana, a subtropical copepod. Limnology and Oceanography, 36, 362–369.

    Article  Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis (p. 353). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Universidad Nacional del Litoral, Santa Fe, Argentina (Project CAI+D 2009 No. PI 69–351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Florencia Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, M.F., Gagneten, A.M. & Paggi, J.C. Copper and Chromium Alter Life Cycle Variables and the Equiproportional Development of the Freshwater Copepod Notodiaptomus conifer (SARS). Water Air Soil Pollut 213, 275–286 (2010). https://doi.org/10.1007/s11270-010-0383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0383-3

Keywords

Navigation