Skip to main content

Advertisement

Log in

Assessment of Water Quality Status for the Selangor River in Malaysia

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Water quality degradation in the Selangor River will still be present in the years to come since pollutant loads from poultry farms, municipal wastewaters, and industrial wastewaters are not envisaged to be handled effectively. This will be facing the problems of water quality status to use for multiple purposes and to provide its aquatic environment continuously. The water quality evaluation system is used to assess the water quality condition in the river. This system distinguishes two categories of water condition i.e., the water quality index and water quality aptitude. The assessment of water quality for the Selangor River from nine stations along the main stream, which concludes that water has been highly polluted (index 5) immediately downstream of station 02 Selangor River before confluence with Kubu River due to high concentration of microorganisms and immediately downstream of station 06 Selangor River before confluence with Batang Kali River due to high concentrations of microorganisms and suspended particles, was verified. Mineral micropollutants were found to gradually pollute the stream water, ranging from the unpolluted water (index 1) in the upstream to the bad quality (index 4) in the downstream area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aston, S. R., Thornton, I., Webb, J. S., Purves, J. B., & Milford, B. L. (1974). Stream sediment composition: an aid to water quality assessment. Water, Air, and Soil Pollution, 3(3), 321–325.

    CAS  Google Scholar 

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143(1–3), 279–290. doi:10.1007/s10661-007-9977-7.

    Article  CAS  Google Scholar 

  • Bordalo, A. A., Teixeira, R., & Wiebe, W. J. (2006). A water quality index applied to an international shared river basin: the case of the Douro river. Environmental Management, 38, 910–920. doi:10.1007/s00267-004-0037-6.

    Article  Google Scholar 

  • Cohen, J., & Shuval, H. I. (1973). Coliforms, fecal coliforms, and fecal streptococci as indicators of water pollution. Water, Air, and Soil Pollution, 2(1), 85–95. doi:10.1007/BF00572392.

    Article  Google Scholar 

  • Department of Environment (DOE). (2003). Water quality management in Malaysia. Kuala Lumpur: DOE Documents.

    Google Scholar 

  • Department of Irrigation and Drainage (DID). (2007). Selangor river basin management plan 2007–2012. Kuala Lumpur: DID publications.

    Google Scholar 

  • Fulazzaky, M. A. (2005). Assessment of river water quality degradation of the Citarum and Brantas rivers by using a new developed water quality index system. In: The 2nd Southeast Asia Water Forum: Better Water Management Through Public Participation, Proceeding, Bali, Indonesia

  • Green, A. M. (1974). Scientific principles for water utilization in the U.S.S.R. Water, Air, and Soil Pollution, 3(2), 237–248.

    Google Scholar 

  • Hoorman, J., Hone, T., Sudman, T., Dirksen, T., Iles, J., & Islam, K. R. (2008). Agricultural impacts on lake and stream water quality in Grand Lake St. Marys, Western Ohio. Water, Air, and Soil Pollution, 193(1–4), 309–322. doi:10.1007/s11270-008-9692-1.

    Article  CAS  Google Scholar 

  • International Law Book Services (ILBS). (2005). Akta Kualiti Alam Sekeliling 1974 (Akta 127) & Peraturan-peraturan dan Perintah-perintah. Kuala Lumpur: ILBS Publications.

    Google Scholar 

  • Lizcano, I. J., Radha Krishnan, K. P., Fan, L. T., & Erickson, L. E. (1974). Identification of parameters in transient water quality models from stochastic data. Water, Air, and Soil Pollution, 3(3), 261–278.

    Google Scholar 

  • Magner, J. A., & Brooks, K. N. (2008). Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality. Environmental Monitoring and Assessment, 138(1–3), 149–158. doi:10.1007/s10661-007-9752-9.

    Article  CAS  Google Scholar 

  • Marsden, J. R., Pingry, D. E., & Whinston, A. (1973). Application of nonlinear programming to water quality control. Water, Air, and Soil Pollution, 2(2), 155–169. doi:10.1007/BF00655694.

    Article  Google Scholar 

  • Mattei, D., Cataudella, S., Mancini, L., Tancioni, L., & Migliore, L. (2006). Tiber river quality in the stretch of a sewage treatment plant: effects of river water or disinfectants to daphnia and structure of benthic macroinvertebrates community. Water, Air, and Soil Pollution, 177(1–4), 441–455. doi:10.1007/s11270-006-9183-1.

    Article  CAS  Google Scholar 

  • Meeroff, D. E., Bloetscher, F., Bocca, T., & Morin, F. (2008). Evaluation of water quality impacts of on-site treatment and disposal systems on urban coastal waters. Water, Air, and Soil Pollution, 192(1–4), 11–24. doi:10.1007/s11270-008-9630-2.

    Article  CAS  Google Scholar 

  • Nunes, M. L., Ferreira Da Silva, E., & De Almeida, S. F. P. (2003). Assessment of water quality in the Caima and Mau river basins (Portugal) using geochemical and biological indices. Water, Air, and Soil Pollution, 150(1–4), 227–250. doi:10.1023/A:1025636106890.

    Article  Google Scholar 

  • Oudin, L. C., Meybeck, M., & Roussel, P. (1999). Système d'évaluation de la qualité de l'eau des cours d'eau. Rapport de presentation SEQ-Eau (version 1), Agence de l'eau Loire-Bretagne, France

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Córdoba city (Argentina) on Suquía river. Water Research, 34, 2915–2926. doi:10.1016/S0043-1354(00)00036-1.

    Article  CAS  Google Scholar 

  • Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152(1–4), 129–152. doi:10.1023/B:WATE.0000015350.14520.c1.

    Article  CAS  Google Scholar 

  • Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., et al. (2006). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7, 315–328. doi:10.1016/j.ecolind.2006.02.005.

    Article  Google Scholar 

  • Sari, I., & Wan Omar, W. M. (2008). Assessing the water quality index of Air Itam dam, Penang, Malaysia. In: International Conference on Environmental Research and Technology (ICERT 2008)

  • Sedeño-Díaz, J. E., & López-López, E. (2007). Water quality in the Río Lerma, Mexico: an overview of the last quarter of the twentieth century. Water Resources Management, 21(10), 1797–1812. doi:10.1007/s11269-006-9128-x.

    Article  Google Scholar 

  • Shastry, J. S., Fan, L. T., & Erickson, L. E. (1972). Analysis of water quality data using spectral analysis. Water, Air, and Soil Pollution, 1(3), 233–256. doi:10.1007/BF00294002.

    Article  Google Scholar 

  • Shuhaimi-Othman, M., Lim, E. C., & Mushrifah, I. (2007). Water quality changes in Chini lake, Pahang, West Malaysia. Environmental Monitoring and Assessment, 131, 279–292. doi:10.1007/s10661-006-9475-3.

    Article  CAS  Google Scholar 

  • Singh, A. P., Ghosh, S. K., & Sharma, P. (2007). Water quality management of a stretch of river Yamuna: an interactive fuzzy multi-objective approach. Water Resources Management, 21(2), 515–532. doi:10.1007/s11269-006-9028-0.

    Article  Google Scholar 

  • Spurgeon, D. J., Rowland, P., Ainsworth, G., Rothery, P., Long, L., & Black, H. I. J. (2008). Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils. Environmental Pollution, 153(2), 273–283. doi:10.1016/j.envpol.2007.08.027.

    Article  CAS  Google Scholar 

  • Tsegaye, T., Sheppard, D., Islam, K. R., Tadesse, W., Atalay, A., & Marzen, L. (2006). Development of chemical index as a measure of in-stream water quality in response to land-use and land cover changes. Water, Air, and Soil Pollution, 174(1–4), 161–179. doi:10.1007/s11270-006-9090-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper used the data monitored by Sungai Harmoni Sdn. Bhd. (water supply company) on November 20, 2007. Data and information provided by the company were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ali Fulazzaky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulazzaky, M.A., Seong, T.W. & Masirin, M.I.M. Assessment of Water Quality Status for the Selangor River in Malaysia. Water Air Soil Pollut 205, 63–77 (2010). https://doi.org/10.1007/s11270-009-0056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0056-2

Keywords

Profiles

  1. Mohamad Ali Fulazzaky