Skip to main content

Advertisement

Log in

Evaluation of Coal Fly Ash-Based Synthetic Aggregates as a Soil Ameliorant for the Low Productive Acidic Red Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A potential new way of producing coal fly ash-based granular synthetic aggregates (CSA) using waste coal fly ash (CFA), paper waste, lime, and gypsum and their utilization as a soil ameliorant to improve crop production in low productive acidic red soil in Okinawa, Japan were studied. The red soil was amended with CSA at three different mixing ratios (i.e., CSA/soil—1:1, 1:5, and 1:10) for the cultivation of Brassica rapa var. Pervidis commonly known as Komatsuna, and the physico-chemical parameters of CSA–soil mixtures and plant growth were analyzed. Incorporation of CSA to the red soil improved the physical and chemical properties of the soil such as water holding capacity, hydraulic conductivity, bulk density, pH, exchangeable cation concentration, cation exchange capacity, particle size distribution, soil pH, electrical conductivity, and carbon content. CSA amendment at ratios of 1:1, 1:5, and 1:10 decreased bulk density by 29.39%, 14.28% and 11.11%, respectively, compared to the original red soil. The acidic pH of the red soil (5.12) was increased to 7.13 and 6.37 by CSA/soil ratios of 1:5 and 1:10, respectively. CSA amendment in soil at 1:5 ratio increased water holding capacity, saturated hydraulic conductivity, electrical conductivity, cation exchange capacity, carbon, potassium (K), magnesium (Mg), and calcium (Ca) content by 0.06 kg kg−1, ten times, 15.95 mS m−1, 1.76 cmolc kg−1, 6.07 g kg−1, 0.42 g kg−1, 0.24 g kg−1, and 3.38 g kg−1, respectively, in comparison to the original red soil. Heavy metal contents of the CSA–soil mixtures were below the maximum pollutant concentrations suggested by the US Environmental Protection Agency. Moreover, Na, K, Mg, Ca, copper (Cu), and zinc (Zn) contents in the CSA–soil mixtures increased in comparison with the original red soil. CSA amendment in soil at the ratio of 1:5 and 1:10 resulted in an increase in plant height and plant fresh weight by three and 12 times, respectively, and there was increase in N, K, Mg, Ca, Cu, and Zn contents of the shoots. The results suggest that utilization of eccentric CSA as soil amendment agent can be regarded as an effective waste management practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments; biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer.

    Google Scholar 

  • Adriano, D. C., Woodford, T. A., & Ciravolo, T. G. (1978). Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash. Journal of Environmental Quality, 7, 416–421.

    Article  CAS  Google Scholar 

  • Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C., & Straughan, I. (1980). Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. Journal of Environmental Quality, 9, 333–344.

    Article  CAS  Google Scholar 

  • Aitken, R. L., Campbell, D. J., & Bell, L. C. (1984). Properties of Australian fly ash relevant to their agronomic utilization. Australian Journal of Soil Research, 22, 443–453. doi:10.1071/SR9840443.

    Article  CAS  Google Scholar 

  • Bellamy, K. L., Chang, C., & Cline, A. (1995). Paper waste utilization in agriculture and container nursery culture. Journal of Environmental Quality, 24, 1074–1082.

    Article  CAS  Google Scholar 

  • Beresniewicz, A., & Nowosielsky, O. (1987). Comparison of the fertilizing effect of brown coal ash with that of limestone on vegetable yields and soil properties. Roczniki Gleboznawcze, 37, 141–149.

    Google Scholar 

  • Bhumbla, D. K., Singh, R. N., & Keefer, R. F. (1991). Water quality from surface mined land reclaimed with fly ash. In: Proceedings of the 9th international Symposium on Management and Use of Coal Combustion Byproducts (CCbs) (pp. 57-1–57-22). American Coal Ash Association, Aurora, Colorado.

  • Blake, G. R., & Hartage, K. H. (1986a). Bulk density. In A. Klute (Ed.), Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9 (pp. 365–375). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Blake, G. R., & Hartage, K. H. (1986b). Particle density. In A. Klute (Ed.), Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9 (pp. 377–382). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Campbell, D. J., Fox, W. E., Aitken, R. L., & Bell, L. C. (1983). Physical characteristics of sands amended with fly ash. Australian Journal of Soil Research, 21, 147–154. doi:10.1071/SR9830147.

    Article  Google Scholar 

  • Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247.

    Article  CAS  Google Scholar 

  • Center for Coal Utilization (2005). Japan Report of National-Wide Survey on the Coal Ash Circumstances, 3-14-10, Mita, Minato-Ku, Tokyo, 108-0073, Japan.

  • Chang, A. C., Lund, L. J., Page, A. L., & Warneke, J. E. (1977). Physical properties of fly ash amended soils. Journal of Environmental Quality, 6(3), 267–270.

    Article  CAS  Google Scholar 

  • Chapman, H. P. (1966). Diagnostic criteria for plants and soils. Oakland, CA, USA:: University of California. Division of Agricultural and Natural Science.

    Google Scholar 

  • Chen, Y., & Li, Y. (2006). Coal fly ash an amendment to container substrate for Spathiphyllum production. Bioresource Technology, 97, 1920–1926. doi:10.1016/j.biortech.2005.08.009.

    Article  CAS  Google Scholar 

  • Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., & Zucca, A. (2003). Heavy metal immobilization in the mining contaminated soils using various industrial wastes. Minerals Engineering, 16, 187–192. doi:10.1016/S0892-6875(03)00003-7.

    Article  CAS  Google Scholar 

  • Claus, L. B. (1994). Legislation for the management of coal use residues. Technical report No. IEACR/68 (pp. 20–21). London: IEA Coal Research.

    Google Scholar 

  • Dwivedi, S., Tripathi, R. D., Srivastata, S., Mishra, S., Shukla, M. K., Tiwari, K. K., et al. (2007). Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere, 67, 140–151. doi:10.1016/j.chemosphere.2006.09.012.

    Article  CAS  Google Scholar 

  • Einsphar, D., Fiscus, M. H., & Gargan, K. (1984). Paper waste as a soil amendment. In. TAPPI Proceedings, Environ. Conf (pp. 253–257). TAPPI, Atlanta, GA, USA.

  • El-Mogasi, D., Lisk, D. J., & Weinstein, L. H. (1988). A review of physical, chemical and biological properties of fly ash and effects on agricultural ecosystems. The Science of the Total Environment, 74, 1–37. doi:10.1016/0048-9697(88)90127-1.

    Article  Google Scholar 

  • Elseewi, A. A., Straughan, I. R., & Page, A. L. (1980). Sequential cropping of fly ash amended soils: Effects on soil chemical properties and yield and elemental composition of plants. The Science of the Total Environment, 15, 247–259. doi:10.1016/0048-9697(80)90053-4.

    Article  CAS  Google Scholar 

  • Fretz, T. A., Gilliam, G. H., Sheppard, W. J., & Pole, H. A. (1980). Aggregated fly ash as a medium amendment for the production of container grown nursery stock. Communications in Soil Science and Plant Analysis, 11(4), 379–392. doi:10.1080/00103628009367045.

    Article  Google Scholar 

  • Furr, A. K., Parkinson, T. F., Gutenmann, W. H., Pakkala, I. S., & Lisk, D. J. (1978). Elemental contents of vegetables, grains and forages field grown on fly ash amended soils. Journal of Agricultural and Food Chemistry, 26, 357–359. doi:10.1021/jf60216a058.

    Article  CAS  Google Scholar 

  • Ghodrati, M., Sims, J. T., & Vasilas, B. L. (1995). Evaluation of fly ash as a soil amendment for the Atlantic Coastal Plain. I. Soil hydraulic properties and elemental leaching. Water, Air, and Soil Pollution, 81, 349–361. doi:10.1007/BF01104020.

    Article  CAS  Google Scholar 

  • Goetz, L. (1983). Radiochemical techniques applied to laboratory studies of water leaching of heavy metals from coal fly ash. Water Science and Technology, 15, 25–47.

    CAS  Google Scholar 

  • Gorman, J. M., Sencindiver, J. C., Horvath, D. J., Singh, R. N., & Keefer, R. F. (2000). Erodibility of fly ash used as a topsoil substitute in mine land reclamation. Journal of Environmental Quality, 29, 805–811.

    Article  CAS  Google Scholar 

  • Hamazaki, T. (1979). Parent materials and soils of Nansei-shoto in Japan. Pedologist, 23(1), 43–57.

    CAS  Google Scholar 

  • Hill, M. J., & Lamp, C. A. (1980). Use of pulverized fuel ash from Victorian brown coal as a source of nutrients for pasture species. Australian Journal of Experimental Agriculture and Animal Husbandry, 20, 377–384. doi:10.1071/EA9800377.

    Article  Google Scholar 

  • Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production—A review. Bioresource Technology, 97, 1136–1147. doi:10.1016/j.biortech.2004.09.004.

    Article  CAS  Google Scholar 

  • Kim, B. Y., Lim, S. U., & Park, J. H. (1994). Influence of fly ash application on content of heavy metal in the soil. I. Content change by the application rate. The Journal of Korean Society of Soil Science and Fertilizer, 27, 65–71.

    CAS  Google Scholar 

  • Kim, B. Y., Back, J. H., & Kim, Y. S. (1997). Effect of fly ash on the yield of Chinese cabbage and chemical properties of soil. The Journal of Korean Society of Soil Science and Fertilizer, 30, 161–167.

    Google Scholar 

  • Klute, A. (1965). Laboratory measurement of hydraulic conductivity of saturated soil. In C. A. Black (Ed.), Methods of soil analysis, part I, agronomy 9 (pp. 210–222). Madison, WI, USA: American Society of Agronomics.

    Google Scholar 

  • Kobayashi, T., & Shinagawa, A. (1966). Studies on the soils of Nansei Islands in the subtropical region of Japan. Bulletin of the Faculty of Agriculture, Kagoshima University, 16, 11–55.

    Google Scholar 

  • Kopsick, D. A., & Angino, E. E. (1981). Effect of leachate solutions from fly and bottom ash on ground water quality. Journal of Hydrology (Amsterdam), 54, 341–356. doi:10.1016/0022-1694(81)90167-0.

    Article  CAS  Google Scholar 

  • Kumar, S. (2002). A perspective study on fly ash–lime–phosphogypsum bricks and hollow blocks for low cost housing development. Construction & Building Materials, 16(3), 519–525. doi:10.1016/S0950-0618(02)00034-X.

    Article  Google Scholar 

  • Kumar, S. (2003). Fly ash–lime–phosphogypsum hollow blocks for walls and partitions. Building and Environment, 398(2), 291–295. doi:10.1016/S0360-1323(02)00068-9.

    Article  Google Scholar 

  • Loneragan, J. F., & Snowball, K. (1969). Calcium requirements of plants. Australian Journal of Agricultural Research, 20, 465–478. doi:10.1071/AR9690465.

    Article  CAS  Google Scholar 

  • Martens, D. C. (1971). Availability of plant nutrients in fly ash. Compost science, 12, 15–19.

    CAS  Google Scholar 

  • Miller, E. E., & Miller, R. D. (1956). Physical theory for capillary flow phenomena. Journal of Applied Physics, 27(4), 324–332. doi:10.1063/1.1722370.

    Article  CAS  Google Scholar 

  • Milovsky, A. V., & Kononov, O. V. (1992). In P. Savostin (Ed.), Zpflanzenernaehr Bodent, Vol. 1132 (pp. 37–45). Moscow: Mir.

    Google Scholar 

  • Mishra, L. C., & Shukla, K. N. (1986). Effects of fly ash deposition on growth, metabolism and dry matter production of maize and soybean. Environmental Pollution, 42, 1–13. doi:10.1016/0143-1471(86)90040-1.

    Article  CAS  Google Scholar 

  • Mittra, B. N., Karmakar, S., Swain, D. K., & Ghosh, B. C. (2005). Fly ash a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 84, 1447–1451. doi:10.1016/j.fuel.2004.10.019.

    Article  CAS  Google Scholar 

  • Miyazaki, T. (1996). Bulk density dependence of air entry suctions and saturate hydraulic conductivities of soils. Soil Science, 161(8), 484–490. doi:10.1097/00010694-199608000-00003.

    Article  CAS  Google Scholar 

  • Molliner, A. M., & Street, J. J. (1982). Effect of fly ash and lime on growth and composition of corn (Zea mays L.) on acid sandy soils. Proceedings of Soil and Crop Science Society of Florida (FL), 41, 217–220.

    Google Scholar 

  • Page, A. L., Elseewi, A. A., & Straughan, I. R. (1979). Physical and chemical properties of fly ash from coal fired power plants with special reference to environmental impacts. Residue Reviews, 71, 83–120.

    CAS  Google Scholar 

  • Peterson, J. C. (1982). Modify your pH perspective. Florists’ Review, 169(34/35), 92–94.

    Google Scholar 

  • Phung, H. T., Lam, H. V., Lund, L. J., & Page, A. L. (1979). The practice of leaching boron and salts from fly ash amended soils. Water, Air, and Soil Pollution, 12, 247–254. doi:10.1007/BF01047127.

    Article  CAS  Google Scholar 

  • Pitchel, J. P. (1990). Microbial respiration in fly ash/paper sludge amended soils. Environmental Pollution, 63, 225–237. doi:10.1016/0269-7491(90)90156-7.

    Article  Google Scholar 

  • Ram, L. C., Jha, S. K., Jha, G. K., Tripathi, R. C., & Singh, G. (1999). Effects of fly ash from FSTPP on the cultivation of wheat and paddy crops in alluvial soil of Murshidabad District. In L.C. Ram, et al. (Ed.), Proceedings of a National Seminar on Utilization of Fly Ash in Agriculture and for Value-Added Products (pp. 20–210). Dhanbad, India: Central Fuel Research Institute.

    Google Scholar 

  • Ram, L. C., Srivastava, N. K., Tripathi, R. C., Jha, S. K., Singh, A. K., Singh, G., et al. (2006). Management of mine spoil for crop productivity with lignite fly ash and biological amendments. Journal of Environmental Management, 79, 173–187. doi:10.1016/j.jenvman.2005.06.008.

    Article  CAS  Google Scholar 

  • Rautaray, S. K., Ghosh, B. C., & Mittra, B. N. (2003). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard cropping sequence under acidic lateritic soils. Bioresource Technology, 90, 275–283. doi:10.1016/S0960-8524(03)00132-9.

    Article  CAS  Google Scholar 

  • Raza, S. A., Khan, M. A., Ahmad, M. S., & Sharma, A. (2000). Behavior of footing resting on fly ash bed reinforced with geofibers and treated with lime, cationic surfactant. In Dayal, U., Sinha, R., Kumar (Eds.), Fly Ash Disposal and Deposition: Beyond 2000 AD (pp. 204–210). New Delhi, India: Narosa.

  • Reynolds, K. A., Kruger, R. A., & Rethman, N. F. G. (1999). The manufacture and evaluation of an artificial soil prepared from fly ash and sewage sludge. In: Proc. Intl. Ash Utiliz (pp. 378–385). Lexington, KY, USA: Sympos.

  • Roberts, F. J. (1966). The effects of sand type and fine particle amendments on the emergence and growth of subterranean clover (Trifolium subterraneum L.) with particular reference to water relations. Australian Journal of Agricultural Research, 17, 657–672. doi:10.1071/AR9660657.

    Article  Google Scholar 

  • Rush, K. A., Guo, T., & Seals, R. K. (2002). Stabilization of Phospogypsum using class c fly ash and lime; assessment of the potential for marine applications. Journal of Hazardous Materials, 93(2), 167–186. doi:10.1016/S0304-3894(02)00009-2.

    Article  Google Scholar 

  • Sajwan, K. S., Paramasivam, S., Alva, A. K., Adriano, D. C., & Hooda, P. S. (2003). Assessing the feasibility of land application of fly ash, sewage sludge and their mixtures. Advances in Environmental Research, 8, 77–91.

    Article  CAS  Google Scholar 

  • SAS Institute (1990). SAS user’s guide, version 6 (4th ed.). Cary, NC: SAS Institute.

    Google Scholar 

  • Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soils. Soil Science, 59, 13–24.

    Article  CAS  Google Scholar 

  • Sen, P. K., Saxena, A. K., & Bhowmik, S. (1997). Ground water contamination around ash ponds. In V.S. Raju, et al. (Ed.), Ash ponds and ash disposal systems (pp. 326–342). New Delhi, India: Narosa Publishing House.

    Google Scholar 

  • Sikka, R., & Kansal, B. D. (1994). Characterization of thermal power plant fly ash for agronomic purposes and to identify pollution hazards. Bioresource Technology, 50, 269–273. doi:10.1016/0960-8524(94)90101-5.

    Article  CAS  Google Scholar 

  • Sikka, R., & Kansal, B. D. (1995). Effect of fly ash application on yield and nutrient composition of rice, wheat and on pH and available nutrient status of soils. Bioresource Technology, 51, 199–203. doi:10.1016/0960-8524(94)00119-L.

    Article  CAS  Google Scholar 

  • Simard, R. R., Baziramakenga, R., Yelle, S., & Coulombe, J. (1998). Effects of de-inking paper wastes on soil properties and crop yields. Canadian Journal of Soil Science, 78, 689–697.

    Google Scholar 

  • Spears, D. A., Booth, C., & Staton, I. (1998). Mode of occurrence of trace elements in Round-Robin, Coals: differential dissolution (p. 31). Sheffield, UK: University of Sheffield. Centre for Analytical Sciences.

    Google Scholar 

  • Spiers, T. M., & Fietje, G. (2000). Green waste compost as a component in soil less growing media. Compost Science & Utilization, 8, 19–23.

    Google Scholar 

  • Summers, R., Clarke, M., Pope, T., & O’Dea, T. (1998). Western Australian fly ash on sandy soils for clover production. Communications in Soil Science and Plant Analysis, 29, 2757–2767. doi:10.1080/00103629809370150.

    Article  CAS  Google Scholar 

  • Tokashiki, Y., Yamada, T., Shimo, M., & Onaga, K. (1994). Physical properties of the surface and the runoff soils of made land in Okinawa Island. Japanese Journal of Soil Science and Plant Nutrition, 65, 115–125.

    Google Scholar 

  • Tripathi, R. D., Vajpayee, P., Singh, N., Rai, U. N., Kumar, A., Ali, M. B., et al. (2004). Efficacy of various amendments for amelioration of fly ash toxicity: Growth performance and metal composition of Cassia siamea Lamak. Chemosphere, 54, 1581–1588. doi:10.1016/j.chemosphere.2003.09.043.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1990). Acid digestion of sediments, sludges, and soils. USEPA SW-S846; Ch 3.2 method 3050A. Washington, DC: USEPA.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1993). Standard for the use or disposal of sewage sludge: final rules 40 CFR parts 257, 403 and 503. Fed. Reg. 58(32), 9284–9415. Washington, DC: USEPA.

  • Weinstein, L. H., Osmeloski, J. F., Rutzke, M., Beers, A. O., McCahan, J. B., Bache, C. A., et al. (1989). Elemental analysis of grasses and legumes growing on soil covering coal fly ash landfill sites. Journal of Food Safety, 9, 291–300. doi:10.1111/j.1745-4565.1989.tb00529.x.

    Article  Google Scholar 

  • Wong, J. W. C., & Wong, M. H. (1990). Effects of fly ash on yields and elemental composition of two vegetables, Brassica parachinensis and B. chinensis. Agriculture Ecosystems & Environment, 30, 251–264. doi:10.1016/0167-8809(90)90109-Q.

    Article  CAS  Google Scholar 

  • Yan, F., Schubert, S., & Mengel, K. (1992). Effect of low root medium pH on net proton release, root respiration, and root-growth of corn (Zea mays L.,) and broad bean (Vicia faba L.,). Plant Physiology, 99, 415–421. doi:10.1104/pp.99.2.415.

    Article  CAS  Google Scholar 

  • Yodder, R. E. (1936). A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal-American Society of Agronomy, 28, 337–351.

    Google Scholar 

Download references

Acknowledgments

Most sincere thanks and appreciation are extended to the Higher Education Ministry of Japan (Monbukagakusho) and Okinawa Electric Company in Okinawa, Japan for providing financial support to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Jayasinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasinghe, G.Y., Tokashiki, Y. & Kitou, M. Evaluation of Coal Fly Ash-Based Synthetic Aggregates as a Soil Ameliorant for the Low Productive Acidic Red Soil. Water Air Soil Pollut 204, 29–41 (2009). https://doi.org/10.1007/s11270-009-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0023-y

Keywords

Navigation