Skip to main content
Log in

A Two-Phase Separation Method for Recovery of Cryptosporidium Oocysts from Soil Samples

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Cryptosporidium parvum oocysts may reach soil through direct deposition of human or animal fecal material, irrigation with raw wastewater or untreated effluents, and contaminated runoff. Examination of soil samples for oocyst presence is of primary importance in order to prevent secondary contamination of crops and groundwater. Several methods were proposed for oocyst recovery from soil samples; however, their efficiency was very low. In the present study, four known methods used to recover oocysts from water and fecal samples (sedimentation, sedimentation with reduced water content, sucrose floatation, water–ether separation) were compared to a method used in the past to recover bacterial spores from bottom sediments (two-phase separation). The two-phase separation technique proved to be the best method of choice resulting in a recovery average of 61.2 ± 15.6%. According to this method, the lowest and highest recoveries were 37% to 95%, respectively. Two other important outcomes were observed with the soil experimental set-up: (1) recovery efficiency is influenced by oocyst viability (high viability was directly correlated with increased recovery efficiency) and (2) high sand content of soil samples reduced oocyst recovery by its detrimental effect on oocyst viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armon, R., Gold, D., Brodsky, M., & Oron, G. (2002). Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Water Science and Technology, 46(3), 115–122.

    CAS  Google Scholar 

  • Barwick, R. S., Mohammed, H. O., White, A. B., & Bryan, R. T. (2000). Detection of Cryptosporidium parvum and Cryptosporidium muris in soil samples. Biology and Fertility of Soils, 31(5), 385–390. doi:10.1007/s003749900185.

    Article  Google Scholar 

  • Boyer, D. G., & Kuczynska, E. (2003). Storm and seasonal distributions of fecal coliforms and Cryptosporidium in a spring. Journal of the American Water Resources Association, 39(6), 1449–1456. doi:10.1111/j.1752-1688.2003.tb04430.x.

    Article  CAS  Google Scholar 

  • Bukhari, Z., & Smith, H. V. (1995). Effect of three concentration techniques on viability of Cryptosporidium parvum oocysts recovered from bovine feces. Journal of Clinical Microbiology, 33(10), 2592–2595.

    CAS  Google Scholar 

  • Chacin-Bonilla, L., Barrios, F., & Sanchez, Y. (2008). Environmental risk factors for Cryptosporidium infection in an island from Western Venezuela. Memorias do Instituto Oswaldo Cruz, 103(1), 45–49. doi:10.1590/S0074-02762008005000007.

    Google Scholar 

  • Chesnot, T., & Schwartzbrod, J. (2004). Quantitative and qualitative comparison of density-based purification methods for detection of Cryptosporidium oocysts in turbid environmental matrices. Journal of Microbiological Methods, 58(3), 375–386. doi:10.1016/j.mimet.2004.05.001.

    Article  CAS  Google Scholar 

  • Dai, X., & Boll, J. (2003). Evaluation of attachment of Cryptosporidium parvum and Giardia lamblia to soil particles. Journal of Environmental Quality, 32(1), 296–304.

    Article  CAS  Google Scholar 

  • Darnault, C. J. G., Garnier, P., Kim, Y.-J., Oveson, K. L., Steenhuis, T. S., Parlange, J.-Y., et al. (2003). Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments. Water Environment Research, 75(2), 113–120. doi:10.2175/106143003X140890.

    Article  CAS  Google Scholar 

  • Duke, L. A., Breathnach, A. S., Jenkins, D. R., Harkis, B. A., & Codd, A. W. (1996). A mixed outbreak of Cryptosporidium and Campylobacter infection associated with a private water supply. Epidemiology and Infection, 116(3), 303–308.

    Article  CAS  Google Scholar 

  • Emerson, D. J., & Cabelli, V. J. (1982). Extraction of Clostridium perfringens spores from bottom sediment samples. Applied and Environmental Microbiology, 44(5), 1144–1149.

    CAS  Google Scholar 

  • Fayer, R. (2004). Cryptosporidium: a water-borne zoonotic parasite. Veterinary Parasitology, 126(1–2), 37–56. doi:10.1016/j.vetpar.2004.09.004.

    Article  Google Scholar 

  • Gale, P. (2003). Using event trees to quantify pathogen levels on root crops from land application of treated sewage sludge. Journal of Applied Microbiology, 94(1), 35–47. doi:10.1046/j.1365-2672.2003.01794.x.

    Article  CAS  Google Scholar 

  • Grimason, A. M., Smith, H. V., Parker, J. F. W., Bukhari, Z., Campbell, A. T., & Robertson, L. J. (1994). Application of DAPI and immunofluorescence for enhanced identification of Cryptosporidium spp oocysts in water samples. Water Research, 28(3), 733–736. doi:10.1016/0043-1354(94)90154-6.

    Article  CAS  Google Scholar 

  • Higgins, J. A., Fayer, R., Trout, J. M., Xiao, L., Lal, A. A., Kerby, S., et al. (2001). Real-time PCR for the detection of Cryptosporidium parvum. Journal of Microbiological Methods, 47(3), 323–337. doi:10.1016/S0167-7012(01)00339-6.

    Article  CAS  Google Scholar 

  • Hijnen, W. A. M., Schijven, J. F., Bonne, P., Visser, A., & Medema, G. J. (2004). Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Science and Technology, 50(1), 147–154.

    CAS  Google Scholar 

  • Hutchison, M. L., Walters, L. D., Moore, T., Thomas, D. J. I., & Avery, S. M. (2005). Fate of pathogens present in livestock wastes spread onto fescue plots. Applied and Environmental Microbiology, 71(2), 691–696. doi:10.1128/AEM.71.2.691-696.2005.

    Article  CAS  Google Scholar 

  • Jenkins, M. B., Bowman, D. D., Fogarty, E. A., & Ghiorse, W. C. (2002). Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials. Soil Biology & Biochemistry, 34(8), 1101–1109. doi:10.1016/S0038-0717(02)00046-9.

    Article  CAS  Google Scholar 

  • Khashiboun, K., Zilberman, A., Shaviv, A., Starosvetsky, J., & Armon, R. (2007). The fate of Cryptosporidium parvum oocysts in reclaimed water irrigation—history and non-history soils irrigated with various effluent qualities. Water, Air, and Soil Pollution, 185(1–4), 33–41. doi:10.1007/s11270-007-9420-2.

    Article  CAS  Google Scholar 

  • Kuczynska, E., & Shelton, D. R. (1999). Method for detection and enumeration of Cryptosporidium parvum oocysts in feces, manures, and soils. Applied and Environmental Microbiology, 65(7), 2820–2826.

    CAS  Google Scholar 

  • Kuznar, Z. A., & Elimelech, M. (2005). Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. Langmuir, 21(2), 710–716. doi:10.1021/la047963m.

    Article  CAS  Google Scholar 

  • Mawdsley, J. L., Brooks, A. E., & Merry, R. J. (1996). Movement of the protozoan pathogen Cryptosporidium parvum through three contrasting soil types. Biology and Fertility of Soils, 21(1–2), 30–36. doi:10.1007/BF00335990.

    Article  Google Scholar 

  • Medema, G. J., Schets, F. M., Teunis, P. F. M., & Havelaar, A. H. (1998). Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water. Applied and Environmental Microbiology, 64(11), 4460–4466.

    CAS  Google Scholar 

  • Neumann, N. F., Gyurek, L. L., Gammie, L., Finch, G. R., & Belosevic, M. (2000). Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Applied and Environmental Microbiology, 66(1), 406–412.

    Article  CAS  Google Scholar 

  • Parker, J. F. W., & Smith, H. V. (1993). Destruction of oocysts of Cryptosporidium parvum by sand and chlorine. Water Research, 27(4), 729–731. doi:.1016/0043-1354(93)90184-J.

    Article  CAS  Google Scholar 

  • Quy, R. J., Cowan, D. P., Haynes, P. J., Sturdee, A. P., Chalmers, R. M., Bodley-Tickell, A. T., et al. (1999). The Norway rat as a reservoir host of Cryptosporidium parvum. Journal of Wildlife Diseases, 35(4), 660–670.

    CAS  Google Scholar 

  • Ramirez, N. E., & Sreevatsan, S. (2006). Development of a sensitive detection system for Cryptosporidium in environmental samples. Veterinary Parasitology, 136(3–4), 201–213. doi:10.1016/j.vetpar.2005.11.023.

    Article  Google Scholar 

  • Robertson, L. J., Campbell, A. T., & Smith, H. V. (1992). Survival of Cryptosporidium parvum oocysts under various environmental pressures. Applied and Environmental Microbiology, 58(11), 3494–3500.

    CAS  Google Scholar 

  • Robertson, L. J., Campbell, A. T., & Smith, H. V. (1998). Viability of Cryptosporidium parvum oocysts: assessment by the dye permeability assay. Applied and Environmental Microbiology, 64(9), 3544–3545.

    CAS  Google Scholar 

  • Searcy, K. E., Packman, A. I., Atwill, E. R., & Harter, T. (2005). Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation. Applied and Environmental Microbiology, 71(2), 1072–1078. doi:10.1128/AEM.71.2.1072-1078.2005.

    Article  CAS  Google Scholar 

  • Slifko, T. R., Smith, H. V., & Rose, J. B. (2000). Emerging parasite zoonoses associated with water and food. International Journal for Parasitology, 30(12–13), 1379–1393. doi:10.1016/S0020-7519(00)00128-4.

    Article  CAS  Google Scholar 

  • Smith, H. V., & Rose, J. B. (1998). Waterborne cryptosporidiosis: current status. Parasitology Today (Personal Ed.), 14(1), 14–22. doi:10.1016/S0169-4758(97)01150-2.

    Article  CAS  Google Scholar 

  • Teunis, P. F. M., Medema, G. J., Kruidenier, L., & Havelaar, A. H. (1997). Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Research, 31(6), 1333–1346. doi:10.1016/S0043-1354(96)00387-9.

    Article  CAS  Google Scholar 

  • Thurston-Enriquez, J. A., Watt, P., Dowd, S. E., Enriquez, R., Pepper, I. L., & Gerba, C. P. (2002). Detection of protozoan parasites and microsporidia in irrigation waters used for crop production. Journal of Food Protection, 65(2), 378–382.

    Google Scholar 

  • Walker, M., & Redelman, D. (2004). Detection of Cryptosporidium parvum in soil extracts. Applied and Environmental Microbiology, 70(3), 1827–1829. doi:10.1128/AEM.70.3.1827-1829.2004.

    Article  CAS  Google Scholar 

  • Walker, M. J., Montemagno, C., Bryant, J. C., & Ghiorse, W. C. (1998). Method detection limits of PCR and immunofluorescence assay for Cryptosporidium parvum in soil. Applied and Environmental Microbiology, 64(6), 2281–2283.

    CAS  Google Scholar 

  • Wilson, J., & Margolin, A. B. (2003). Efficacy of glutaraldehyde disinfectant against Cryptosporidium parvum in the presence of various organic soils. Journal of AOAC International, 86(1), 96–100.

    CAS  Google Scholar 

  • Zuckerman, U., Gold, D., Shelef, G., Yuditsky, A., & Armon, R.(1997) Microbial degradation of Cryptosporidium parvum by Serratia marcescens with high chitinolytic activity. In C. R. Fricker, J. L. Clancy, & P. A. Rochelle (Eds.) 1997 International Symposium on Waterborne Cryptosporidium Proceedings (pp. 297–304). AWWA, Newport Beach, California, March 2–5, 1997.

Download references

Acknowledgement

The present study was partially funded by a grant from Grand Water Research Institute (GWRI), at Technion, Haifa, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Armon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilberman, A., Zimmels, Y., Starosvetsky, J. et al. A Two-Phase Separation Method for Recovery of Cryptosporidium Oocysts from Soil Samples. Water Air Soil Pollut 203, 325–334 (2009). https://doi.org/10.1007/s11270-009-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0015-y

Keywords

Navigation