Skip to main content

Advertisement

Log in

Arbuscular Mycorrhizal Association in Plants Growing on Metal-Contaminated and Noncontaminated Soils Adjoining Kanpur Tanneries, Uttar Pradesh, India

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Commonly occurring plant species on metal-contaminated soils and noncontaminated soils adjoining Kanpur Tanneries, Uttar Pradesh, India were surveyed for arbuscular mycorrhizal association. In the present study, pH, electric conductivity (E.C.), organic carbon, macronutrients (available phosphorus, available potassium), micronutrients (Cu and Zn), and toxic metals (Cr, Cd, Pb) were higher in metal-contaminated site compared to noncontaminated site. These factors were also significantly different between metal-contaminated and noncontaminated soils. High E.C. along with toxic concentrations of metals like Cr, Cd, and Pb may have acted as selection pressure for vegetation cover, making the metal-contaminated site hostile for cultivation purpose. The study recorded Arum type of arbuscular mycorrhiza. The highest mean total root colonization levels in metal-contaminated and noncontaminated soils were 100% (Parthenium sp.) and 34.16% (Parthenium sp.), respectively. Maximum mean spore density in metal-contaminated and noncontaminated soils was 19 spores rhizosphere soil−1 (Parthenium sp.) and nine spores rhizosphere soil−1 (Desmostachya bipinnata and Cynodon sp.), respectively. Studies revealed that for a particular plant species, the root colonization levels and spore density (except Cynodon sp.) were higher in contaminated soil compared to noncontaminated soils. A total of six species of arbuscular mycorrhizal fungi belonging to two genera viz., Glomus and Scutellospora were recovered during the study. Species richness of arbuscular mycorrhizal fungi was maximum in the noncontaminated site compared to the metal-contaminated site. This result suggests that continuous exposure of plants and associated arbuscular mycorrhizal fungi to heavy metals can result in tolerant species which can be used for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold, P. T., & Kaputska, L. A. (1987). VA mycorrhizal colonization and spore populations in abandoned agricultural field after five years of sludge addition. The Ohio Journal of Science, 87, 112–114.

    Google Scholar 

  • Baker, A. J. M., Mc Grath, J. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ trace metal decontamination of polluted soils using of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49. doi:10.1016/0921-3449(94)90077-9.

    Article  Google Scholar 

  • Beena, K. R., Raviraja, N. S., Arun, A. D., & Sridhar, K. R. (2000). Diversity of arbuscular mycorrhizal fungi on coastal sand dunes of the West Coast of India. Current Science, 79(10), 1459–1465.

    CAS  Google Scholar 

  • Bi, Y. L., Li, X. L., Christie, P., Hu, Z. Q., & Wong, M. H. (2003). Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere, 50, 863–869. doi:10.1016/S0045-6535(02)00231-X.

    Article  CAS  Google Scholar 

  • Bollag, J., Mertz, T., & Otjen, L. (1994). Role of microorganisms in soil bioremediation. In T. A Anderson, & J. R Coats (Eds.), Bioremediation through Rhizosphere Technology. ACS symposium series (pp. 2–10). Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Brundrett, M. C., Piche, Y., & Peterson, R. L. (1985). A developmental study of the early stages in vesicular arbuscular mycorrhiza formation. Canadian Journal of Botany, 66, 184–194.

    Article  Google Scholar 

  • Bukert, B., & Robson, A. (1994). 65Zinc uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular–arbuscular mycorrhizal fungi in a root free sandy soil. Soil Biology & Biochemistry, 26, 1117–1124. doi:10.1016/0038-0717(94)90133-3.

    Article  Google Scholar 

  • Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation—Focusing on accumulator plants that remediate metal contaminated soils. Australian Journal of Ecology, 4, 7–51.

    Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    CAS  Google Scholar 

  • Daiz, G., & Honrubia, M. (1993). Infectivity of mine spoils from south east Spain. 2. Mycorrhizal population levels in spoilt sites. Mycorrhiza, 4, 85–88.

    Google Scholar 

  • Davies, F. T., Puryear, J. D., Newton, R. J., & Saravia Grossi, J. A. (2001). Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helinthus annus). Journal of Plant Physiology, 158, 777–786. doi:10.1078/0176-1617-00311.

    Article  CAS  Google Scholar 

  • Del Val, C., Barea, J. M., & Azcon- Aguilar, C. (1999). Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65, 718–723.

    CAS  Google Scholar 

  • Diaz, G., Azcon-Aguilar, C., & Honrubia, M. (1996). Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthillis cystisoides. Plant and Soil, 180, 241–249. doi:10.1007/BF00015307.

    Article  CAS  Google Scholar 

  • Dueck, T. A., Visser, P., Ernst, W. H. O., & Schat, H. (1986). Vesicular–arbuscular mycorrhizae decrease zinc toxicity to grass growing in Zinc polluted soil. Soil Biology & Biochemistry, 18, 331–333. doi:10.1016/0038-0717(86)90070-2.

    Article  Google Scholar 

  • El-Kherbawy, M., Angle, J. S., Heggo, A., & Chaney, R. L. (1989). Soil pH, rhizobia and vesicular mycorrhizae inoculum effects on growth and heavy metal uptake of alfalfa(Medicago sativa L.). Biology and Fertility of Soils, 8, 61–65. doi:10.1007/BF00260517.

    Article  CAS  Google Scholar 

  • Galli, U., Schuepp, H., & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–368. doi:10.1111/j.1399-3054.1994.tb05349.x.

    Article  CAS  Google Scholar 

  • Gaur, A., & Adholeya, A. (1994). Estimation of VAM spores in the soil—A modified method. Mycorrhiza News, 6, 10–11.

    Google Scholar 

  • Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.

    CAS  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spore density of Endogone species extracted from soil wet sieving and decanting. Transactions of the British Mycological Society, 46, 235–244.

    Google Scholar 

  • Gildon, A., & Tinker, P. B. (1981). A heavy metal tolerant strain of mycorrhizal fungus. Transactions of the British Mycological Society, 77, 648–649.

    Article  Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. The New Phytologist, 84, 489–500. doi:10.1111/j.1469-8137.1980.tb04556.x.

    Article  Google Scholar 

  • Gonzalez-Chavez, C., Harris, P. J., Dodd, J., & Meharg, A. A. (2002). Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. The New Phytologist, 155, 163–171. doi:10.1046/j.1469-8137.2002.00430.x.

    Article  CAS  Google Scholar 

  • Griffioen, W. A. J. (1994). Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza, 4, 197–200. doi:10.1007/BF00206780.

    Article  CAS  Google Scholar 

  • Hanway, J. J., & Heidel, H. (1952). Soil analysis method as used in Iowa State College Soil Testing Laboratory. Iowa Agriculture, 57, 1–31.

    Google Scholar 

  • Hayes, W. J., Chaudhry, T. M., Buckney, R. T., & Khan, A. G. (2003). Phytoaccumulation of trace metals at the Sunny Corner mine, Near South Wales, With Suggestions for a possible remediation strategy. Australian Journal of Ecology, 9, 69–82.

    CAS  Google Scholar 

  • Hildebrandt, U., Kaldorf, M., & Bothe, H. (1999). The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 154, 709–717.

    CAS  Google Scholar 

  • Jackson, M. L. (1971). Soil chemical analysis. New Delhi: Prentice Hall.

    Google Scholar 

  • Jacquot-Plumey, E., Van Tuinen, D., Chatagnier, O., Gianinazzi, S., & Gianinazzi-Pearson, V. (2001). 25S rDNA-based molecular monitoring of glomalean fungi in sewage sludge-treated field plots. Environmental Microbiology, 3, 525–531. doi:10.1046/j.1462-2920.2001.00219.x.

    Article  CAS  Google Scholar 

  • Joner, E. J., & Leyval, C. (1997). Uptake of 109 Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. The New Phytologist, 135, 353–360. doi:10.1046/j.1469-8137.1997.00633.x.

    Article  CAS  Google Scholar 

  • Khade, S. W. (2005). Heavy metal tolerance in plants mediated through arbuscular mycorrhizal fungi. Annual report. Phase, 1, 1–28.

    Google Scholar 

  • Khade, S. W., & Adholeya, A. (2007). Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: A retrospective. Bioremediation Journal, 11, 1–33. doi:10.1080/10889860601185855.

    Article  CAS  Google Scholar 

  • Li, X. L., Marschner, H., & George, E. (1991). Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root to shoot transport in white clover. Plant and Soil, 136, 49–57. doi:10.1007/BF02465219.

    Article  CAS  Google Scholar 

  • Liao, J. P., Lin, X. G., Cao, Z. H., Shi, Y. Q., & Wong, M. H. (2003). Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 50, 847–853. doi:10.1016/S0045-6535(02)00229-1.

    Article  CAS  Google Scholar 

  • Oleson, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1945). Estimation of available phosphorus in soils by extraction with sodium carbonate. Cir. US. Dep. Agric. 939.

  • Pawlowska, T. E., Blaszkowski, J., & Ruhling, A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505. doi:10.1007/s005720050154.

    Article  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedure for clearing roots and staining of mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.

    Article  Google Scholar 

  • Raju, P. S., Clark, R. B., Ellis, J. R., & Maranville, J. W. (1990). Effects of species of VA mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant and Soil, 121, 165–170. doi:10.1007/BF00012308.

    Article  CAS  Google Scholar 

  • Raman, N., Nagarajan, N., Gopinathan, S., & Sambandan, K. (1993). Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biology and Fertility of Soils, 16, 76–78. doi:10.1007/BF00336520.

    Article  Google Scholar 

  • Raskin, I., Nanda Kumar, P. B. A., Dushenkov, V., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5, 285–290. doi:10.1016/0958-1669(94)90030-2.

    Article  CAS  Google Scholar 

  • Schenck, N. C., & Perez, Y. (1990). Manual for identification of VA Mycorrhizal fungi. In N. C. Schenck, & Y. Perez (Eds.), INVAM (pp. 1–283). USA: University of Florida, Gainesville.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis. San Deigo, California: Academic Press.

    Google Scholar 

  • ST. John, T. V., & Koske, R. E. (1988). Statistical treatment of endogonaceous spore counts. Transactions of the British Mycological Society, 91, 117–121.

    Google Scholar 

  • Tews, L. L., & Koske, R. E. (1986). Towards a sampling strategy for vesicular arbuscular mycorrhizas. Transactions of the British Mycological Society, 87, 353–358.

    Article  Google Scholar 

  • Turnau, K., Miszals, Z., Trouvelot, A., Bonfante, P., & Gianinazzi, S. (1996). Oxalis acetosella as monitoring plant on highly polluted soils. In C. Azcon-Agiular, & J. M. Barea (Eds.) Mycorrhizas in integrated system: From genes to plant development, European commission (pp. 483-486) EUR 16728. Luxembourg.

  • Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 8(6), 971–983. doi:10.1111/j.1462-2920.2006.00980.x.

    Article  Google Scholar 

  • Vyas, D., Dwivedi, O. P., Yadav, R. K., & Vyas, K. M. (2003). Arbuscular diversity of VAM fungi. In G. P. Rao, C. Manoharachari, D. J. Bhat, R. C. Rajak, & T. N. Lakhanpal (Eds.), Frontiers of fungal diversity (pp. 873–889). Lucknow, India: International Book Distributors CO.

    Google Scholar 

  • Walkley, A. J., & Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29–38. doi:10.1097/00010694-193401000-00003.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., & Leyval, C. (1995). Root colonization in maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and Cadmium uptake in sand culture. Plant and Soil, 175, 233–238. doi:10.1007/BF00011359.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1994a). Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant and Soil, 157(2), 247–256. doi:10.1007/BF00011053.

    Article  Google Scholar 

  • Weissenhorn, I., Glashoff, A., Leyval, C., & Berthelin, J. (1994b). Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM0 fungal spores isolated from heavy metal polluted and unpolluted soils. Plant and Soil, 167, 189–196. doi:10.1007/BF00007944.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1995a). Bioavailability of heavy metals and arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28. doi:10.1007/BF00336342.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1995b). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a sewage sludge amended sandy soil. Soil Biology & Biochemistry, 27, 287–296. doi:10.1016/0038-0717(94)00179-5.

    Article  CAS  Google Scholar 

  • Zak, J. C., & Parkinson, D. (1982). Initial vesicular–arbuscular mycorrhizal development of slender wheat grass on two amended mine spoils. Canadian Journal of Botany, 60, 2241–2248.

    Google Scholar 

  • Zak, J. C., Daneilson, R. M., & Parkinson, D. (1982). Mycorrhizal fungal spore numbers and species occurrence in two amended mine spoils in Alberta, Canada. Mycologia, 74, 785–792. doi:10.2307/3792865.

    Article  Google Scholar 

Download references

Acknowledgement

The first author, Dr. Sharda W. Khade would like to thank the Department of Biotechnology, Govt. India for the award of fellowship to carry out Post Doctoral Work at TERI, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharda W. Khade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khade, S.W., Adholeya, A. Arbuscular Mycorrhizal Association in Plants Growing on Metal-Contaminated and Noncontaminated Soils Adjoining Kanpur Tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202, 45–56 (2009). https://doi.org/10.1007/s11270-008-9957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9957-8

Keywords

Navigation