Skip to main content
Log in

A Comparative Study of Immobilized Nitrifying and Co-Immobilized Nitrifying and Denitrifying Bacteria for Ammonia Removal from Sludge Digester Supernatant

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Bench scale kinetic experiments were conducted to examine the use of cell immobilization in calcium alginate to remove ammonia in anaerobic sludge digester supernatant. Two systems, immobilized nitrifiers and co-immobilized nitrifiers and denitrifiers, were studied with and without the addition of methanol. Results indicated that partial nitrification (to nitrite) was achieved in both systems. The co-immobilized reactors did not exhibit the extent of nitrite accumulation observed in the solely nitrifying reactors. The nitrifying reactors were unable to buffer the hydrogen ion production, during the nitrification process, to the level the co-immobilized cell reactors achieved. Both of these differences suggested the occurrence of denitrification in the co-immobilized reactors. Scanning electron microscopic images of bacteria immobilized in the alginate spherical beads support the results of the kinetic experiments. Nitrifiers colonized in the 100–200 μm peripheral layer of the beads. Large voids caused by nitrogen gas due to denitrification were found in a number of co-immobilized bead samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA, AWWA, & WEF (1998). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association 20th Ed.

    Google Scholar 

  • Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal Water Pollution Control Federation, 48, 835–852.

    CAS  Google Scholar 

  • Aravinthan, V., Takizawa, S., & Fujita, K. (1998). Factors affecting nitrogen removal from domestic wastewater using immobilized bacteria. Water Science and Technology, 38, 193–202. doi:10.1016/S0273-1223(98)00404-1.

    Article  CAS  Google Scholar 

  • Cao, G., Zhao, Q., Sun, X., & Zhang, T. (2002). Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells. Enzyme and Microbial Technology, 30, 49–55. doi:10.1016/S0141-0229(01)00458-6.

    Article  CAS  Google Scholar 

  • Cao, G., Zhao, Q., Sun, X., & Zhang, T. (2004). Integrated nitrogen removal in a shell-and-tube co-immobilized cell bioreactor. Process Biochemistry, 39, 1269–1273. doi:10.1016/S0032-9592(03)00256-5.

    Article  CAS  Google Scholar 

  • Chen, K. C., Lee, S. C., Chin, S. C., & Houng, J. Y. (1998). Simultaneous carbon–nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology, 23, 311–320. doi:10.1016/S0141-0229(98)00054-4.

    Article  CAS  Google Scholar 

  • Constantine, T., Murthy, S., Bailey, W., Benson, L., Sadick, T., & Daigger, G. (2005). Alternatives for treating high nitrogen liquor from advanced anaerobic digestion at the blue plains AWTP. Proceeding 78th Annual Water Environment Federation Conference & Exposition, Washington, D.C. Oct. 29–Nov. 2, 2005.

  • dos Santos, V. A. P. M., Bruijnse, M., Tramper, J., & Wijffels, R. H. (1996a). The magic-bead concept: an integrated approach to nitrogen removal with co-immobilized microorganisms. Applied Microbiology and Biotechnology, 45, 447–453.

    CAS  Google Scholar 

  • dos Santos, V. A. P. M., Tramper, J., & Wijffels, R. H. (1996b). Modeling and evaluation of an integrated nitrogen removal system with microorganisms co-immobilized in double-layer gel beads. Biotechnology Progress, 12, 240–248. doi:10.1021/bp9600041.

    Article  CAS  Google Scholar 

  • Fux, C., Lange, K., Faessler, A., Huber, P., Grueniger, B., & Siegrist, H. (2003). Nitrogen removal from digester supernatant via nitrite—SBR or SHARON? Water Science and Technology, 48, 9–18.

    CAS  Google Scholar 

  • Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., & Furukawa, K. (2007). Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69, 776–784 doi:10.1016/j.chemosphere.2007.05.023.

    Article  CAS  Google Scholar 

  • Hanaki, K., Wantawin, C., & Ohgaki, S. (1990). Nitrificaiton at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Research, 24, 297–302. doi:10.1016/0043-1354(90)90004-P.

    Article  CAS  Google Scholar 

  • Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M., & Heijnen, J. J. (1998). The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 37, 135–142. doi:10.1016/S0273-1223(98)00281-9.

    Article  CAS  Google Scholar 

  • Metcalf & Eddy (2003). Wastewater engineering: Treatment, disposal and reuse (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Mulder, A., van de Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16, 177–184. doi:10.1111/j.1574-6941.1995.tb00281.x.

    Article  CAS  Google Scholar 

  • Qin, L., & Liu, Y. (2006). Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor. Chemosphere, 63, 926–933 doi:10.1016/j.chemosphere.2005.09.036.

    Article  CAS  Google Scholar 

  • Rostron, W. M., Stuckey, D. C., & Young, A. A. (2001). Nitrification of high strength ammonia wastewater: Comparative study of immobilisation media. Water Research, 35, 1169–1178 doi:10.1016/S0043-1354(00)00365-1.

    Article  CAS  Google Scholar 

  • Sun, G., & Austin, D. (2007). Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere, 68, 1120–1128 doi:10.1016/j.chemosphere.2007.01.060.

    Article  CAS  Google Scholar 

  • Third, K. A., Sliekers, A. O., Kuenen, J. G., & Jetten, M. S. M. (2001). The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, 24, 588–596 doi:10.1078/0723-2020-00077.

    Article  CAS  Google Scholar 

  • Uemoto, H., Ando, A., & Saiki, H. (2000). Effect of oxygen concentration on nitrogen removal by Nitrosomonas europaea and Paracoccus denitrificans immobilized with tubular polymeric gel. Journal of Bioscience and Bioengineering, 90, 654–660 doi:10.1263/jbb.90.654.

    Article  CAS  Google Scholar 

  • van Dongen, U., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2001). The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Science and Technology, 44, 153–160.

    Google Scholar 

  • van Ginkel, C. G., Tramper, J., Luyben, K. C. A. M., & Klapwijk, A. (1983). Characterization of Nitrosomonas europaea immobilized in calcium alginate. Enzyme and Microbial Technology, 5, 297–303. doi:10.1016/0141-0229(83)90081-9.

    Article  Google Scholar 

  • Wijffels, R. H., & Tramper, J. (1995). Nitrification by immobilized cells. Enzyme and Microbial Technology, 17, 482–492. doi:10.1016/0141-0229(94)00099-D.

    Article  CAS  Google Scholar 

  • Wright (2004). Sound investment: New York City pushes high-tech, low-cost. Engineering News-Record, 253, 24–27.

  • Yang, P. Y., Cao, K., & Kim, S. J. (2002). Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environment Research, 74, 226–234 doi:10.2175/106143002X139947.

    Article  CAS  Google Scholar 

  • Yang, P. Y., & See, T. S. (1991). Packed entrapped mixed microbial cell process for removal of phenol and its compounds. Journal of Environmental Science and Health A, 26, 1491–1512.

    Article  Google Scholar 

  • Yang, P. Y., Zhang, Z. Q., & Jeong, B. G. (1997). Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Research, 31, 2617–2625. doi:10.1016/S0043-1354(97)00109-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Stipend support for the Research Fellow, Christopher B. Hill, was provided by the North Dakota Water Resources Research Institute. Appreciations are conveyed to Dr. Robert Zimmerman and staff at the Moorhead Wastewater Treatment Facility for assisting in the collection of wastewater samples used in the following research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eakalak Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, C.B., Khan, E. A Comparative Study of Immobilized Nitrifying and Co-Immobilized Nitrifying and Denitrifying Bacteria for Ammonia Removal from Sludge Digester Supernatant. Water Air Soil Pollut 195, 23–33 (2008). https://doi.org/10.1007/s11270-008-9724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9724-x

Keywords

Navigation