Skip to main content
Log in

Enhanced Heavy Metal Phytoextraction from Marine Dredged Sediments Comparing Conventional Chelating Agents (Citric Acid and EDTA) with Humic Substances

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Laboratory experiments were carried out to examine the effects of chelating agents on heavy metal extraction from slightly contaminated dredged sediments from the port of Livorno (Italy). Ethylene diamine tetraacetate (EDTA), citric acid (CA) and humic substances (HS) were tested in two different concentrations each: 120 and 480, 500 and 2,000, 500 and 1,000 mg/l, respectively. Solubilisation of heavy metals (Cu and Zn) was observed for both EDTA and HS in the extraction kinetic experiments: 58% of the total Cu and 50% of the total Zn in the sediment were mobilised from the solid matrix using EDTA (480 mg/l) and 32% of the total Cu and 5% of the total Zn, using HS (1,000 mg/l). It was observed that solubilized metal levels were positively related to the chelating agent concentration. HS performance in the heavy metals mobilisation and phyto-toxicity tests was considered promising. HS represent an innovation in enhanced phytoextraction techniques: they can be considered an environmentally non-impacting bio-agronomic amendment. CA induced no significant effects on heavy metal mobilisation and it also negatively affects seed germination (Germination Index < 40%). Laboratory experiments with plants showed that none of the treatments significantly affected the biomass production and a trend could only be detected for the heavy metal uptake into shoots of Paspalum vaginatum sp. Transplantation of seashore paspalum is useful as a pre-treatment of contaminated dredged sediments, since it is a salt-tolerant species and it can be easily adaptable on a nutrient poor and fine textured medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1994). Bioremediation in the rhizosphere. Environmental Science and Technology, 27, 2630–2636.

    Article  Google Scholar 

  • Aprill, W., & Sims, R. C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soils. Chemosphere, 20, 253–265.

    Article  CAS  Google Scholar 

  • Arancon, N. Q., Edwards, C. A., Lee, S., & Byrne, R. (2006). Effects of humic acid from vermicomposts on plant growth. European Journal of Soil Biology, 42, 65–69.

    Article  Google Scholar 

  • Barbero, P., Beltrami, R., Baudo, R., & Rossi, D. (2005). Assessment of Lake Orta sediments phytotoxicity after the liming treatment. Journal of Limnology, 60, 269–276.

    Google Scholar 

  • Benitez, E., Sainz, H., & Nogales, R. (2005). Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresource Technology, 96, 785–790.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  • Bregante, M., Paganetto, A., Magistrelli, P., Martella, L., Gambale, F., Sacchi, G. A. et al. (2001). Un sistema pilota per la fito-decontaminazione di suoli da piombo. ARS, 82 Novembre/Dicembre 2001.

  • Burns, R. G., Dell’Agnola, G., Miele, S., Nardi, S., Savoini, G., Schnitzer, M., et al. (1986). Humic substances effect on soil and plants. Italy: Reda edizioni per l’agricoltura.

    Google Scholar 

  • Ceccanti, B., Garcia, C., Nogales, R., Benitez, E., & Masciandaro, G. (1996). Attività e ruolo delle sostanze umiche nell’ambiente; aspetti chimico-strutturali e biochimici. Pros. of the II Convegno Nazionale del Capitolo Italiano dell’IHSS, “Dal suolo alla pianta, dalla pianta al suolo. Le sostanze umiche come base della sostenibilità”. Udine, Italia, 12–13 dicembre 1996).

  • Chang, Y. Y., & Corapcioglu, M. Y. (1998). Plant-enhanced subsurface bioremediation of non volatile hydrocarbons. ASCE Journal of Environmental Engineering, 124, 162–169.

    Article  CAS  Google Scholar 

  • Dixit, V. K., & Kishore, N. (1967). Effect of humic acid and fulvic acid fraction of soil organic matter on seed germination. Indian Journal of Science and Industry, 1, 202–206.

    CAS  Google Scholar 

  • EPA (2000). Introduction to Phytoremediation. EPA/600/R-99/107.

  • Huang, J. W., Chen, J. J., Berti, W. R., & Cuningham, S. D. (1997). Phytoremediation of lead-contaminated soils: role of synthetic chelating agents in lead phytoextraction. Environmental Science and Technology, 31, 800–805.

    Article  CAS  Google Scholar 

  • Huang, J. W., & Cunningham, S. D. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 134, 75–84.

    Article  CAS  Google Scholar 

  • Hue, N. V., Campbell, S., Li, Q. X., Lee, C. R., & Fong, J. (2002). Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants. Remediation. New York: Wiley Periodicals, Inc.

    Google Scholar 

  • Iannelli, R., Giraldi, D., Bianchi, V., Ceccanti, B., & Masciandaro, G. (2006). Tecniche di Fitorimediazione applicate al trattamento di sedimenti di dragaggio: analisi preliminari e prove sperimentali di fattibilità. Pros. of the SIBESA VIII - Italo-Brasilian Simposio on Environmental Engineering – 17–22 September 2006 Fortaleza, Brazil.

  • Jones, K. C. (1991). Organic contaminants in the environment. New York, NY: Elsevier Applied Science.

    Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science and Technology, 29, 1232–1238.

    Article  CAS  Google Scholar 

  • Lors, C., Tiffreau, C., & Laboudigue, A. (2004). Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere, 56, 619–630.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  CAS  Google Scholar 

  • Luo, C., Shen, Z. G., Li, X., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63, 1773–1784.

    Article  CAS  Google Scholar 

  • Masciandaro, G., Ceccanti, B., & Garcia, C. (1997). Soil agro-ecological management: fertirrigation and vermicompost treatments. Bioresource Technology, 59, 199–206.

    Article  CAS  Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.

    Article  CAS  Google Scholar 

  • Meers, E., Lamsal, S., Vervaeke, P., Hopgood, M., Lust, N., & Tack, F. M. G. (2005). Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environmental Pollution, 137, 354–364.

    Article  CAS  Google Scholar 

  • Meers, E., Vervaeke, P., Tack, F. M. G., Lust, N., Verloo, M., & Lesage, E. (2003). Field trial experiment: phytoremediation with Salix sp. on a dredged sediment disposal site in Flanders, Belgium. Remediation Journal, 13, 87–97.

    Article  Google Scholar 

  • Möcko, A., & Waclawek, W. (2004). Three-step extraction procedure for determination of heavy metals availability to vegetables. Analytical and Bioanalytical Chemistry, 380, 813–817.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials, 85, 145–163.

    Article  CAS  Google Scholar 

  • Nedunuri, K. V., Banks, M. K., Schwab, A. P., & Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. Journal of Environmental Engineering, 126, 483–490.

    Article  CAS  Google Scholar 

  • Newman, L. A., Strand, S. E., Choe, N., Duffy, J., Ekuan, G., Ruszaj, M., Shurtleff, B. B., Wilmoth, J., Heilman, P., Gordon, M. P. (1997). Uptake and Biotransformation of Trichloroethylene by Hybrid Poplars. Environmental Science and Technology, 31, 1062–1067.

    Article  CAS  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of Soil Analyses. Part 2. Chemical and Microbiological Properties (2nd ed., pp. 403–430). Madison, Wisconsin, USA: SSSA.

    Google Scholar 

  • Pivetz, B. E. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S-01/500.

  • Quevauviller, P., Rauret, G., Lopez-Sanchez, J. F., Ure, A., & Muntau, A. H. (1999). Three-step sequential extraction procedure for the determination of the extractable contents of trace metals in sediment. Report of the European Commission’s Standards, Measurements and Testing Programme (BCR) of DG XII, Luglio, 1999.

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ureb, A., et al. (1998). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  Google Scholar 

  • Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, S., Smith, R. D., Raskin, I. (1997). Metal Accumulation by Aquacultured Seedlings of Indian Mustard. Environmental Science and Technology, 31, 1636–1644.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (2002). Phytoremediation of Soil and Groundwater. Technology Evaluation Report. GWRTAC, TE-02–01.

  • Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in population of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120, 445–453.

    Article  CAS  Google Scholar 

  • SISS (Società Italiana Scienza del Suolo) (2000). Metodi di Analisi Chimica del Suolo. Franco Angeli ed., cap. XII.

  • Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., et al. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38, 937–944.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation Binding by Humic Substances. Cambridge University Press.

  • Vandevivere, P. C., Saveyn, H., Verstraete, W., Feijtel, T. C. J., & Schowanek, D. R. (2001). Biodegradation of metal–[S,S]- EDDS complexes. Environmental Science and Technology, 35, 1765–1770.

    Article  CAS  Google Scholar 

  • Vaughan, D., & MacDoanld, I. R. (1976). Some effect of humic acid on cation uptake by parenchyma tissue. Soil Biology and Biochemistry, 8, 415–421.

    Article  CAS  Google Scholar 

  • Wu, J., Hsu, F. C., & Cunningham, S. D. (1999). Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environmental Science and Technology, 33, 1898–1904.

    Article  CAS  Google Scholar 

  • Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Biological evaluation of compost maturity. Biocycle, 22, 27–29.

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was funded by the Italian Ministry of the Environment, Land and Sea within the Italian-Israeli Cooperation on Environmental Technologies – Project 5 and partially by COFIN 2006/2008 “Definizione di un protocollo su base sperimentale per la messa a punto della metodologia di fitorimediazione di terreni e sedimenti con contaminazioni di diversa natura”.

The authors thank Dr. Giovanni Motta and Dr. Massimo Dini (Livorno Port Authority – Environment, Safety and Quality District) for providing the studied sediments.

The authors thank also Dr. Eleonora Peruzzi, Dr. Cinzia Trassinelli, Dr. Cristina Macci, Dr. Serena Doni and Dr. Natalia Menoni (ISE–CNR Pisa) for the technical assistance in the chemical and biological measurements and Dr. Francesco Orlandi for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, V., Masciandaro, G., Giraldi, D. et al. Enhanced Heavy Metal Phytoextraction from Marine Dredged Sediments Comparing Conventional Chelating Agents (Citric Acid and EDTA) with Humic Substances. Water Air Soil Pollut 193, 323–333 (2008). https://doi.org/10.1007/s11270-008-9693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9693-0

Keywords

Navigation