Skip to main content
Log in

Stability of Arsenic Species in Soils Contaminated Naturally and in an Anthropogenic Manner

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Stability and transport of As species in soils were investigated in three contaminated Central European regions in the Czech Republic; one of them represents naturally contaminated area, the others are results of a former mining activity. Total As content varied from 60 to <18,000 ppm depending on locality and sampling layer. Sequential extraction procedure (SEP) enabled to distinguish five main fractions of As in soils based on different chemical and binding properties. Non-specifically and weakly sorbed As, as well as As remained in solid rests of samples did not exceed 10% of total As; specifically bounded As varied from 5 to 15%. The substantial portion of As was bound to hydrated Fe oxides (HFO) in amorphous and poorly-crystalline forms (10–30% of the total As) and/or to a well-crystallized forms of the same phases (50–80%). As sorption on HFO surface, particularly on well-crystallized phases represented the most significant and stable As bond in soils. Model leaching experiments illustrated the increased mobility of As species at pH ≈ 7.0 in the soil–groundwater–surface water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cao, X., Ma, L. Q., & Shiralipour, A. (2003). Effect of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution, 126, 157–167.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A., Jugsujinda, A., DeLaune, R. D., Patrick, W. H., Burló, F., & Sirisukhodom, S., et al. (1999). The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environment International, 25(5), 613–618.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Davis, C. C., Knocke, W. R., & Edwards, M. (2001). Implications of aqueous silica sorption to iron hydroxide: Mobilization of iron colloids and interference with sorption of arsenate and humic Substances. Environmental Science and Technology, 35, 2158–2162.

    Google Scholar 

  • Doušová, B. (1989). Biogeochemical cycle of arsenic from the point of view of atmospheric processes. PhD Thesis, ÚGG CSAS Prague, Czech Republic (in Czech).

  • Doušová, B., Koloušek, D., Kovanda, F., Machovič, V., & Novotná, M. (2005). Removal of As(V) species from extremely contaminated mining water. Applied Clay Science, 28, 31–42.

    Article  CAS  Google Scholar 

  • Doušová, B., Machovič, V., Koloušek, D., Kovanda, F., & Dorničák, V. (2003). Sorption of As(V) species from aqueous systems. Water Air & Soil Pollution, 149, 251–267.

    Article  Google Scholar 

  • Fernández, P., Sommer, I., Cram, S., Rosas, I., & Gutiérrez, M. (2005). The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Science of the Total Environment, 348, 231–243.

    Article  CAS  Google Scholar 

  • Filippi, M. (2004). Oxidation of the arsenic-rich concentrate at the Přebuz abandoned mine (Erzgebirge Mts., CZ): Mineralogical evolution. Science of the Total Environment, 322(1–3), 271–282.

    Article  CAS  Google Scholar 

  • Filippi, M., Goliáš, V., & Pertold, Z. (2004). Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudný and Kašperské Hory gold deposits, Bohemian Massif (CZ). Environmental Geology, 45, 716–730.

    Article  CAS  Google Scholar 

  • Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal, 66, 413–421.

    Article  CAS  Google Scholar 

  • Grafe, M., Eick, M. J., & Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 65, 1680–1687.

    Article  CAS  Google Scholar 

  • Gustaffson, J. P., & Jacks, G. (1995). Arsenic geochemistry in forested soil profiles as relevated by solid-phase studies. Applied Geochemistry, 10, 307–315.

    Article  Google Scholar 

  • Han, F. X., & Banin, A. (1995). Selective sequential dissolution techniques for trace metals in arid-zone soils: The carbonate dissolution step. Communications in Soil Science and Plant Analysis, 26(3&4), 553–576.

    Article  CAS  Google Scholar 

  • Keegan, T. J., Farago, M. E., Thornton, I., Hong, B., Colvile, R. N., & Pesch, B., et al. (2006). Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Science of the Total Environment, 358, 61–71.

    Article  CAS  Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35, 2778–2784.

    Article  CAS  Google Scholar 

  • Ko, I., Kim, J. Y., & Kim, K. W. (2004). Arsenic speciation and sorption kinetics in the As-hematite-humic acid system. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 234, 43–50.

    Article  CAS  Google Scholar 

  • Lumsdon, D. G., Meeussen, J. C. L., Paterson, E., Garden, L. M., & Anderson, P. (2001). Use of solid phase characterisation and chemical modelling for assessing the behaviour of arsenic in contaminated soils. Applied Geochemistry, 12, 571–581.

    Article  Google Scholar 

  • Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science & Technology, 32, 2383–2388.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60, 121–131.

    Article  CAS  Google Scholar 

  • Matera, V., Le Hécho, I., Laboudigue, A., Thomas, P., Tellier, S., & Astruc, M. (2003). A methodological approach for the identification of arsenic bearing phases in polluted soils. Environmental Pollution, 126, 51–64.

    Article  CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere – A review. Science of the Total Environment, 249, 297–312.

    Article  CAS  Google Scholar 

  • Mihaljevič, M., Sisr, L., Ettler, V., Šebek, O., & Průša, J. (2004). Oxidation of as-bearing gold ore – A comparison of batch and column experiments. Journal of Geochemical Exploration, 81(1–3), 59–70.

    Article  CAS  Google Scholar 

  • Mihaljevič, M., Poňavič, M., Ettler, V., & Šebek, O. (2003). A comparison of sequential extraction techniques for determining arsenic fractionation in synthetic mineral mixtures. Analytical and Bioanalytical Chemistry, 377, 723–729.

    Article  CAS  Google Scholar 

  • Morávek, P., Janatka, P., Pertoldová, J., Straka, J., Ďurišová, J., & Pudilová, M. (1989). Mokrsko gold deposit – The largest gold deposit in the Bohemian Massif, Czechoslovakia. Economic Geology Monographs, 6, 252–259.

    Google Scholar 

  • Randall, S. R., Sherman, D. M., & Ragnarsdottir, K. V. (2001). Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4. 3H2O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 65 (7), 1015– 1023

    Google Scholar 

  • Sherman, D. M., & Randall, S. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS Spectroscopy. Geochimica Et Cosmochimica Acta, 67(22), 4223–4230.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Štyriaková, I., Štyriak, I., Kraus, I., Hradil, D., Grygar, T., & Bezdička, Biodestruction and deferritization of quartz sands by Bacillus species. Minerals Engineering, 16, 709–713.

  • Taggart, M. A., Carlisle, M., Pain, D. J., Williams, R., Osborn, D., & Joyson, A., et al. (2004). The distribution of arsenic in soils affected by the Aznalcóllar mine spill, SW Spain. Science of the Total Environment, 323(1–3), 137–152.

    Article  CAS  Google Scholar 

  • Thomaidis, N. S., Bakeas, E. B., & Siskos, P. A. (2003). Characterization of lead cadmium arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere, 52, 956–966.

    Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In J. M. Bigham (Ed.) Methods of soil analysis. Part 3, chemical methods (pp. 475–489). Madison, WI, USA: SSSA - Book Series no. 5.

    Google Scholar 

  • Voigt, D. E., & Brantley, S. L. (1996). Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11, 633–643.

    Article  CAS  Google Scholar 

  • Warwick, P., Inam, E., & Evans, N. (2005). Arsenics interaction with humic acid. Environment & Chemistry, 2, 119–124.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

  • Williams, J. D., Stera, J. K., & Walker, T. W. (1967). Fractionation of solid inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci Soc Amer Proc, 31, 736–739.

    Article  CAS  Google Scholar 

  • Yamamura, S., Ike, M., & Fujita, M. (2003). Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. Strain SF-1. Journal of Bioscience and Bioengineering, 96(5), 454–460.

    CAS  Google Scholar 

  • Yunosuke, H., Hori, T., & Sugiyama, M. (2005). Release of trace oxyanions from littoral sediments and suspended particles included by pH increase in the epilimnion of lakes. Limnology and Oceanography, 50(2), 636–645.

    Article  Google Scholar 

  • Zeng, T., Sarofim, A. F., & Senior, C. L. (2001). Vaporization of arsenic, selenium and antimony during coal combustion. Combustion and Flame, 126, 1714–1724.

    Article  CAS  Google Scholar 

  • Zhang, W., Singh, P., Paling, E., & Delides, S. (2004). Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17, 517–524.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the Research programme MSM 6046137302 (CR) and Institutional Research Plan no. AV0Z30130516 (Institute of Geology, AS CR, Prague).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Doušová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doušová, B., Martaus, A., Filippi, M. et al. Stability of Arsenic Species in Soils Contaminated Naturally and in an Anthropogenic Manner. Water Air Soil Pollut 187, 233–241 (2008). https://doi.org/10.1007/s11270-007-9511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9511-0

Keywords

Navigation