Skip to main content

Advertisement

Log in

Comparison of Aeration Status Measurements by Clark Sensor (DO) and ODR-Meter during Azolla caroliniana Willd. Growth in the Presence of Cd(II) and Hg(II)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was examination possibility of Azolla caroliniana Willd. to aerate its medium enriched with Cd(II) and Hg(II) and comparison of DO and ODR methods in measurement aeration status of solutions. Azolla system has been chosen to verify the validity of the measuring ODR method in water solution. Water aeration measurements, one of important environmental tests, are performed most often by measurement of dissolved oxygen with oxygen sensors. Other similar method called oxygen diffusion rate is generally used in different porous materials such as soil. Our first objective was to check if these both methods are comparable and may be use exchangeable in water solution. The both types of measurements were performed in medium saturated at different oxygen concentrations. The linear relationship and high correlation (R = 0.89) were found between values of ODR and DO. The object of the second part of our studies was A. caroliniana Willd. (Azollaceae), a floating water fern living in symbiosis with cyanobacterium Anabaena azollae Strasb. (Nostoceae) that fixes atmospheric nitrogen. Azolla plants are used for centuries as a nitrogen biofertilizer. The second aim of our work was to find out, if the fern reduces or increases oxygen concentration in water. The ODR method was used to determine the aeration status of the nutrient solution. During 12 days of the experiment at laboratory conditions, an active role of A. caroliniana in aeration of the nutrient solution containing Cd(II) and Hg(II) was stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ashton, P. J., & Walmsey, R. D. (1976). The aquatic fern Azolla and its Anabaena symbiont. Endeavour, 35, 39–45.

    Article  CAS  Google Scholar 

  • Bennicelli, R., Stępniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 141–146.

    Article  CAS  Google Scholar 

  • Breitburg, D. L. (2002). Effects of hypoxia, and balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries, 25, 767–781.

    Article  Google Scholar 

  • Carpenter, J. H. (1965). The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnology and Oceanography, 10, 141–143.

    Article  CAS  Google Scholar 

  • Carrapiço, F., & Tavares, R. (1989a). New data on the Azolla–Anabaena symbiosis. I. Morphological and histochemical aspect. In A. Skinner, R. M. Boddey, & I. Frederik (Eds.), Nitrogen fixation with non-legume (pp. 89–94). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Carrapiço, F., & Tavares, R. (1989b). New data on the AzollaAnabaena symbiosis. II. Cytochemical and immunocytochemical. In A. Skinner, R. M. Boddey, & L. Frederik (Eds.), Nitrogen fixation with non-legume (pp. 95–100). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Cavallini, A., Natali, L., Durante, M., & Maserti, B. (1999). Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Science of the Total Environment, 243/244, 119–127.

    Article  CAS  Google Scholar 

  • Chen, Y. X., He, Y. M., Luo, Y. M., Yu, Y. L., Lin, Q., & Wong, M. H. (2003). Physiological mechanism of plant roots exposed to cadmium. Chemosphere, 50, 789–793.

    Article  CAS  Google Scholar 

  • Connell, E. L., Colmer, T. D., & Walker, D. I. (1999). Radial oxygen loss of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquatic Botany, 63, 219–228.

    Article  Google Scholar 

  • Culberson, C. H. (1991). Dissolved oxygen. WHP operations and methods, July, pp. 1–15.

  • Dat, J. F., Capelli, N., Folzer, H., Bourgesde, P., & Badot, P. M. (2004). Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, 42, 273–282.

    Article  CAS  Google Scholar 

  • Dawar, S., & Singh, P. K. (2001). Growth, nitrogen fixation and occurrence of epiphytic algae at different pH in the cultures of two species of Azolla. Biology and Fertility of Soils, 34, 210–214.

    Article  CAS  Google Scholar 

  • Dilhan, M., Estève, D., Gué, A. M., Mauvais, O., & Mercier, L. (1995). Electrochemical oxygen microsensors. Sensors and Actuators B, 26–27, 401–403.

    Article  Google Scholar 

  • Gliński, J., & Stępniewski, W. (1985). Oxygen diffusion rate (ODR). In Soil aeration and its role for plants (pp. 181–186). Boca Raton, Florida: CRC.

  • Hechler, W. D., & Dawson, J. O. (2000). Factors affecting nitrogen fixation in Azolla caroliniana. Transactions of the Illinois State Academy of Science, 88(3, 4), 97–107.

    Google Scholar 

  • Jespersen, D. N., Sorrell, B. K., & Brix, H. (1998). Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany, 61, 165–180.

    Article  CAS  Google Scholar 

  • Lemon, E. R., & Erickson, A. E. (1952). The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Science, 16, 160.

    CAS  Google Scholar 

  • Lucassen, E. C. H. E. T., Bobbink, R., Smolders, A. J. P., Van der Ven, P. J. M., Lamers, L. P. M., & Roelofs, J. G. M. (2002). Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecology, 165, 45–52.

    Article  Google Scholar 

  • Lucassen, E. C. H. E. T., Smolders, A. J. P., & Roelofs, J. G. M. (2000). Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Botany, 66, 321–327.

    Article  CAS  Google Scholar 

  • Malicki, M., & Walczak, R. (1983). A gauge for redox potential and the oxygen diffusion rate in the soils with automatic regulation of cathode potential. Zeszyty Problemowe Postêpów Nauk Rolniczych, 220, 447–452.

    Google Scholar 

  • Mandal, B., Vlek, P. L. G., & Mandal, L. N. (1999). Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: A review. Biology and Fertility of Soils, 28, 329–342.

    Article  CAS  Google Scholar 

  • McConnachie, A. J., de Wit, M. P., Hill, M. P., & Byrne, M. J. (2003). Economic evaluation of the successful biological control of Azolla filiculoides in South Africa. Biological Control, 28, 25–32.

    Article  Google Scholar 

  • Meharg, A. A. (1994). Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell and Environment, 17, 989–993.

    Article  CAS  Google Scholar 

  • Mommer, L., Pedersen, O., & Visser, E. J. W. (2004). Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant, Cell and Environment, 27, 1281–1287.

    Article  Google Scholar 

  • Nei, L., & Compton, R. G. (1996). An improved Clark-type galvanic sensor for dissolved oxygen. Sensors and Actuators B, 30, 83–87.

    Article  Google Scholar 

  • Prasand, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35(4), 525–545.

    Article  Google Scholar 

  • Sanità di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.

    Article  Google Scholar 

  • Snowden, R. E. D., & Wheeler, B. D. (1993). Iron toxicity to fen plant species. Journal of Ecology, 81(1), 35–46.

    Article  CAS  Google Scholar 

  • Stępniewska, Z., Bennicelli, R. P., Balakhina, T. I., Szajnocha, K., Banach, A., & Wolińska, A. (2005). Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. International Agrophysics, 19(3), 251–256.

    Google Scholar 

  • Susarla, S., Medina, V. F., & McCutcheon, S. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.

    Article  Google Scholar 

  • Vasailev, A., Tsonev, T., & Yordanov, I. (1998). Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environmental Pollution, 103, 287–293.

    Article  Google Scholar 

  • Visser, E. J. W., Colmer, T. D., Blom, C. W. P. M., & Voesenek, L. A. C. J. (2000). Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Environment, 23, 1237–1245.

    Article  Google Scholar 

  • Voesenek, L. A. C. J., Armstrong, W., Bőgemann, G. M., McDonald, M. P., & Colmer, T. D. (1999). A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus Aust. Journal of Plant Physiology, 26, 87–93.

    Google Scholar 

  • Wackett, L. P. (2002). Mechanism and applications of Rieske non-heme iron dioxygenases. Enzyme and Microbial Technology, 31, 577–587.

    Article  CAS  Google Scholar 

  • Watanabe, I. (1982). Azolla–Anabaena symbiosis – Its physiology and use in tropical agriculture. In Y. R. Dommergues & H. G. Diem (Eds.), Microbiology of tropical soils and plant productivity (pp. 168–185). The Hague: Martinus Nijhoff.

    Google Scholar 

  • Watanabe, I., Roger, P. A., Landha, J. K., & Van Hove, C. (1992). Biofertilizer germoplasm collections at IRRI. Manila: International Rice Research Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Bennicelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennicelli, R.P., Stępniewska, Z., Banach, K. et al. Comparison of Aeration Status Measurements by Clark Sensor (DO) and ODR-Meter during Azolla caroliniana Willd. Growth in the Presence of Cd(II) and Hg(II). Water Air Soil Pollut 180, 29–37 (2007). https://doi.org/10.1007/s11270-006-9247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9247-2

Keywords

Navigation