Skip to main content
Log in

The Recession of Spring Hydrographs, Focused on Karst Aquifers

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study constitutes a review of spring hydrograph recession analysis, and it is focused on karst aquifers. The different literature models have been separated into empirical and physically-based models; in the last ones, only analytical models have been considered, as they provide the discharge equation during recession. Under constant geometrical and hydraulic aquifer characteristics, it has been found that the “exponential form” appears to be the most recurrent theoretical type, at least during the long-term flow recession. During this stage, any deviation from the exponential form, may suggest hydraulic anisotropy of actual aquifers, as well as aquifer geometry has a fundamental role in controlling the shape of spring hydrographs. The hydrodynamics of karst aquifer under recession has been described, associating any segment of the hydrograph to a specific hydrologic condition of the aquifer, and also to a specific physical law which control the water flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexakis D, Tsakiris G (2010) Drought impacts on karstic spring annual water potential. Application on Almyros (Crete) brackish spring. Desalin Water Treat 16(1–3):229–237

    Article  Google Scholar 

  • Amit H, Lyakhovsky V, Katz A, Starinsky A, Burg A (2002) Interpretation of spring recession curves. Ground Water 40(5):543–551

    Article  Google Scholar 

  • Ashton K (1966) The analysis of flow data from karst drainage systems. Trans Cave Res Group G B 7:161–203

    Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–100

    Article  Google Scholar 

  • Bagaric (1976) Discussion on article “Estimation of permeability and effective porosity in karst on the basis of recession curve analyses” by Torbarov K. In: Yevjevich V (ed) Karst hydrology and water resources, 1976, vol 1. Karst Hydrology, Water Resources Publications, Colorado, p 135

  • Baedke SJ, Krothe NC (2001) Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis. Water Resour Res 37(1):13–19

    Google Scholar 

  • Bailly-Comte V, Martin JB, Jourde H, Screaton EJ, Pistre S, Langston A (2010) Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J Hydrol 386:55–66

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Barnes BS (1939) The structure of baseflow recession curve. Trans Am Geophys Union 20:721–725

    Article  Google Scholar 

  • Berkaloff E (1967) Limite de validité des formules courantes de tarissement de débit. Chronique d’Hydrogéologie 10:31–41

    Google Scholar 

  • Binet S, Joigneaux E, Alberic P, Pauwels H, Bruand A (2013) Hydraulic boundary conditions as a controlling factor of water exchanges between a saturated karstic conduit and its surrounding hosted rock – Abstract of the Int. Symp. on Hierarchical Flow Systems in Karst Regions, 4-7 September 2013, Budapest

  • Birk S, Hergarten S (2010) Early recession behaviour of spring hydrographs. J Hydrol 387(1–2):24–32

    Article  Google Scholar 

  • Bonacci O (1987) Karst hydrology. Springer Verlag, Herdelberg

    Book  Google Scholar 

  • Bonacci O (1988) Determination of the catchment areas in karst – 21st IAH congress, 10-15 October 1988, Guilin, China, 606-611

  • Bonacci O (1993) Karst spring hydrographs as indicators of karst aquifers. Hydrol Sci J 38:51–62

    Article  Google Scholar 

  • Bonacci O (1995) Ground water behaviour in karst: example of the Ombla Spring (Croatia). J Hydrol 165:113–134

    Article  Google Scholar 

  • Bonacci O, Zivaljevic R (1993) Hydrological explanation of the flow in karst: example of the Crnojevica spring. J Hydrol 146:405–419

    Article  Google Scholar 

  • Boussinesq J (1877) Essai sur la theorie des eaux courantes du mouvement nonpermanent des eaux souterraines. [Theory of underground water flow under a non-permanent regime]. Acad Sci Instr Fr 23:252–260

    Google Scholar 

  • Boussinesq J (1903) Sur un mode simple d’écoulement des nappes d’eau d’infiltration á lit horizontal, avec rebord vertical tout autour lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond. C R Acad Sci 137:5–11

    Google Scholar 

  • Boussinesq J (1904) Recherches the’oriques sur l’e’coulement des nappes d’eau infiltre’es dans le sol et sur le de’bit des sources. J Math Pure Appl 10:5–78

    Google Scholar 

  • Brutsaert W (1994) The unit response of ground water outflow from a hill-slope –. Water Resour Res 30(10):2759–2763

    Article  Google Scholar 

  • Castany G (1967) Introduction à l’ètude des courbes de tarissements. Chronique d’Hydrogeol 10:23–30

    Google Scholar 

  • Civita M, Galfrè M, Vigna B (2005) Nuovi contributi all'analisi della curva di svuotamento delle sorgenti carsiche. Ingegneria e Geologia degli Acquiferi (IGEA, Torino) 20:35–47

    Google Scholar 

  • Coutagne A (1948) Les variations de dèbit en pèriode non influencèe par les prècipitations. Le dèbit d’inflitration (corrèlations fluviales internes) - 2me partie, Meteorologie et Hydrologie, La Houille Blanche, 416–436

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269

    Article  Google Scholar 

  • Dreybrodt W, Romanov D, Kaufmann G (2010) Evolution of caves in porous limestone by mixing corrosion: a model approach. Geologia Croatica 63(2):129–135

    Article  Google Scholar 

  • Drogue C (1972) Analyse statistique des hydrogrammes de decrues des sources karstiques. J Hydrol 15:49–68

    Article  Google Scholar 

  • Drogue C (1980) Essai d’identification d’un type de structure de magasins carbonatés fissurés: application à l’interprétation de certains aspects du fonctionnement hydrogéologique. Mémoire hors série de la Société Géologique de France 11:101–108

    Google Scholar 

  • Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier I (1997) A numerical simulation as a tool for checking the interpretation of karst springs hydrographs. J Hydrol 193:306–315

    Article  Google Scholar 

  • Estrela T, Sahuquillo A (1997) Modelling the response of a karstic spring at Arteta aquifer in Spain. Ground Water 35(1):18–24

    Article  Google Scholar 

  • Fiorillo F (2011) Tank-reservoir emptying as a simulation of recession limb of karst spring hydrographs. Hydrogeol J 19:1009–1019

    Article  Google Scholar 

  • Fiorillo F (2012) Reply to comment on “Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs”. Hydrogeol J 20:1429–1431

    Article  Google Scholar 

  • Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by the cross-correlation analysis. Hydrogeol J 18:1881–1895

    Article  Google Scholar 

  • Fiorillo F, Guadagno FM (2010) Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resour Manag 24:1867–1884

    Article  Google Scholar 

  • Fiorillo F, Guadagno FM (2012) Long Karst spring discharge time series and droughts occurrence in southern Italy. Environ Earth Sci 65(8):2273–2283

    Article  Google Scholar 

  • Fiorillo F, Revellino P, Ventafridda G (2012) Karst aquifer draining during dry periods. J Cave Karst Stud 74(2):148–156

    Article  Google Scholar 

  • Florea LJ, Vacher HL (2006) Springflow hydrographs: eogenetic vs. telogenetic karst. Ground Water 44(3):352–361

    Article  Google Scholar 

  • Ford DC, Ewers RO (1978) The development of limestone cave systems in the dimensions of length and depth. Can J Earth Sci 15(11):1783–1798

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and heomorphology. Wiley, England, 562 pp

    Book  Google Scholar 

  • Forkasiewicz J, Paloc H (1967) Le regime de tarissement de la Foux-de-la-Vis [Analysis of the recession period of the Foux-de-la-Vis spring]. Etude preliminaire. Chronique d’Hydrogeologie, BRGM 3(10):61–73

    Google Scholar 

  • Gabrovšek F, Dreybrodt W (2010) Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: a model. J Hydrol 386(1–4):130–141

    Article  Google Scholar 

  • Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J. doi:10.1007/s10040-012-0897-4

    Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564

    Article  Google Scholar 

  • Goldscheider N (2012) A holistic approach to groundwater protection and ecosystem services in karst terrains. AQUA Mundi 2:117–124

    Google Scholar 

  • Gunn J (1986) A conceptual model for conduit flow dominated karst aquifers. In “Karst water resources. In: Günay G, Johnson AI (eds) Proc Ankara Symp, July 1985, 587-596. IAHS Publ. n.161

  • Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox Cave system (Missouri, USA). J Hydrol 204:24–36

    Article  Google Scholar 

  • Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction with engineering and geological applications. McGraw-Hill, NY, 278 pp

    Google Scholar 

  • Jacob CE (1946) Radial flow in a leaky artesian aquifer. Trans Am Geophys Union 27:198–205

    Article  Google Scholar 

  • Jeannin P-Y, Sauter M (1998) Analysis of karst hydrodynamic behaviour using global approaches : a review. Bulletin d’Hydrogeologie 16:31–48

    Google Scholar 

  • Kaufmann G (2003) A model comparison of karst aquifer evolution for different matrix flow formulations. J Hydrol 283(1–4):281–289

    Article  Google Scholar 

  • Kiraly L (2002) Karstification and groundwater flow. In: Postojna-Ljubljana, Gabrovsek F, Zalozba ZRC (eds) Evolution of karst: from prekarst to cessation 155–190

  • Kovács A, Perrochet P (2008) A quantitative approach to spring hydrograph decomposition. J Hydrol 352:16–29

    Article  Google Scholar 

  • Kovács A, Perrochet P, Király L, Jeannin P (2005) A quantitative method for characterisation of karst aquifers based on the spring hydrograph analysis. J Hydrol 303:152–164

    Article  Google Scholar 

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, 807 pp

    Google Scholar 

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Engineering, theory, management, and sustainability. Elsevier, Butterworth- Heinemann, Oxford, 573 pp

    Google Scholar 

  • Maillet E (1905) Essais d’Hydraulique souterraine et fluviale [Underground and river hydrology]. Hermann, Paris, 218

    Google Scholar 

  • Malìk P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mts., Slovakia. Environ Geol 51:707–711

    Article  Google Scholar 

  • Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 65(8):2245–2257

    Article  Google Scholar 

  • Maramathas AJ, Boudouvis AG (2010) A “fractal” modification of Torricelli’s formula. Hydrogeol J 18:311–316

    Article  Google Scholar 

  • Martin JB, Dean RW (2001) Exchange of water between conduits and matrix in the Floridan aquifer. Chem Geol 179(1–4):145–165

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquiféres karstiques [A contribution to the study of karst aquifer hydrodynamics]. 3éme partie. Annales de Spéléogie 30(1):21–124

    Google Scholar 

  • Mijatovic BF (1968) A method studying the hydrodynamic regime of karst aquifers by analysis of the discharge curve and level fluctuation during the recession [In Serbian]. Vesnik Zavoda za Geloska I Geofizicka Istrazivanja, Serie B 8:41–81

    Google Scholar 

  • Milanovic P (1976) Water regime in deep karst: case study of Ombla spring drainage area. In: Yevjevich V (ed) Karst hydrology and water resources, vol 1. Karst Hydrology, Water resources Pubblications, Colorado, pp 165–191

    Google Scholar 

  • Milanovic PT (1981) Karst hydrogeology. Water Resources Publications, Littleton, 434 pp

    Google Scholar 

  • Mohammadi Z, Shoja A (2013) Effect of annual rainfall amount on characteristics of karst spring hydrograph. Carbonates Evaporites. doi:10.1007/s13146-013-0175-0

    Google Scholar 

  • Nutbrown DA, Downing RA (1976) Normal-mode analysis of the structure of base flow recession curves. J Hydrol 30:327–340

    Article  Google Scholar 

  • Padilla A, Pulido-Bosh A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32:267–277

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Ravbar N, Engelhardt I, Goldscheider N (2011) Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjsek spring, Slovenia. Hydrol Process 25:2130–2140

    Article  Google Scholar 

  • Rorabaugh MI (1964) Estimating changes in bank storage and ground-water contribution to streamflow. Int Assoc Sci Hydrol Publ 63:432–441

    Google Scholar 

  • Sahuquillo A, Gómez-Hernández, JJ (2003) Comment on ‘‘Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis” by SJ Baedke and NC Krothe. Water Resour Res 39(6):1152. doi:10.1029/2002WR001472

  • Samani N, Ebrahimi B (1996) Analysis of spring hydrographs for hydrogeological evaluation of a karst aquifer system. Theor Appl Karstol 9:97–112

    Google Scholar 

  • Schöller H (1965) Hydrodynamique dans le karst. [Hydrodynamics of the karst] Proc Dubrovnik Sym. Hydrology of Fractured Rocks -UNESCO, 1:3–20

  • Schmidt S, Geyer T, Guttman J, Marei A, Ries F, Sauter M (2014) Characterisation and modelling of conduit restricted karst aquifers – example of the Auja spring, Jordan Valley. J Hydrology. doi:10.1016/j.jhydrol.2014.02.019

  • Soulios G (1991) Contribution à l’ètude des coubes de recession des souces karstiques : example du pays hellènique. J Hydrol 124:29–42

    Article  Google Scholar 

  • Stevanovic Z, Milanovic, Ristic V (2010) Supportive methods for assessing effective porosity and regulating karst aquifers. Acta Carsologica 39(2):301–311

    Google Scholar 

  • Szilagyi J (1999) On the use of semi-logarithmic plots for baseflow separation. Ground Water 37(5):660–662

    Article  Google Scholar 

  • Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524

    Article  Google Scholar 

  • Torbarov K (1976) Estimation of permeability and effective porosity in karst on the basis of recession curve analyses. In: Yevjevich V (ed) Karst hydrology and water resources. Water resources Pubblications, Colorado, pp 121–136

    Google Scholar 

  • Trainer FW, Watkins FA (1974) Use of base-runoff recession curves to determine areal transmissivities in the upper Potomac River basin. US Geol Survey J Res 2:125–131

    Google Scholar 

  • Tsakiris G, Alexakis D (2013) Karstic spring water quality: the effect of groundwater abstraction from the recharge area. Desalin Water Treat. doi:10.1080/19443994.2013.800253

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of Karst terrain. Oxford Press University, New York, p 464

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. J Cave Karst Stud 69(1):13–26

    Google Scholar 

  • Winston WE, Criss RE (2004) Dynamic hydrologic and geochemical response in a perennial karst spring. Water Resour Res 40(5):W051061–W0510611

    Google Scholar 

Download references

Acknowledgments

Author is grateful to anonymous reviewers for their helpful advises. This article belongs to a series of “reviews in karst hydrogeology” promoted by the IAH Karst Commission (www.iah.org/karst) with the goal to collect and evaluate current knowledge in different fields of karst hydrogeology and make it available to the scientific community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fiorillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorillo, F. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resour Manage 28, 1781–1805 (2014). https://doi.org/10.1007/s11269-014-0597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0597-z

Keywords

Navigation