Skip to main content

Advertisement

Log in

Groundwater Model Calibration by Meta-Heuristic Algorithms

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Groundwater models are computer models that simulate or predict aquifer conditions by using input data sets and hydraulic parameters. Commonly, hydraulic parameters are extracted by calibration, using observed and simulated aquifer conditions. The accuracy of calibration affects other modeling processes, especially the hydraulic head simulation. Meta-heuristic algorithms are good candidates to determine optimal/near-optimal parameters in groundwater models. In this paper, two meta-heuristic algorithms: (1) particle swarm optimization (PSO) and (2) pattern search (PS) are applied and compared in the Ghaen aquifer, by considering the sum of the squared deviation (SSD) between observed and simulated hydraulic heads and the sum of the absolute value of deviation (SAD) between observed and simulated hydraulic heads as the objective functions. Results show that obtained values of the objective function are enhanced significantly by using the PS algorithm. Accordingly, PS improves (decreases) the SSD and SAD by 0.20 and 2.36 percent, respectively, compared to results reported by using the PSO algorithm. Results also indicate that the proposed PS optimization tool is effective in the calibration of aquifer parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Afshar A, Kazemi H, Saadatpour M (2011a) Particle swarm optimization for automatic calibration of large scale Water quality model (CE-QUAL-W2): application to Karkheh reservoir, Iran. Water Resour Manag 25(10):2613–2632

    Article  Google Scholar 

  • Afshar A, Shafii M, Bozorg Haddad O (2011b) Optimizing multi-reservoir operation rules: an improved HBMO approach. J Hydroinf 13(1):121–139

    Article  Google Scholar 

  • Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341(3–4):165–176

    Article  Google Scholar 

  • Bozorg Haddad O, Mariño MA (2011) Optimum operation of wells in coastal aquifers. Proc Inst Civ Eng Water Manag 164(3):135–146

    Article  Google Scholar 

  • Bozorg Haddad O, Afshar A, Mariño MA (2008) Design-operation of multi-hydropower reservoirs: HBMO approach. Water Resour Manag 22(12):1709–1722

    Article  Google Scholar 

  • Bozorg Haddad O, Afshar A, Mariño MA (2009) Optimization of non-convex water resource problems by honey-bee mating optimization (HBMO) algorithm. Eng Comput (Swansea, Wales) 26(3):267–280

    Article  Google Scholar 

  • Bozorg Haddad O, Mirmomeni M, Mariño MA (2010) Optimal design of stepped spillways using the HBMO algorithm. Civ Eng Environ Syst 27(1):81–94

    Article  Google Scholar 

  • Bozorg Haddad O, Afshar A, Mariño MA (2011a) Multireservoir optimisation in discrete and continuous domains. Proc Inst Civ Eng Water Manag 164(2):57–72

    Article  Google Scholar 

  • Bozorg Haddad O, Moradi-Jalal M, Mariño MA (2011b) Design-operation optimisation of run-of-river power plants. Proc Inst Civ Eng Water Manag 164(9):463–475

    Google Scholar 

  • Chuanwen J, Bompard E (2005) A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment. Energy Convers Manag 46(17):2689–2696

    Article  Google Scholar 

  • Dakhlaoui H, Bargaoui Z, Bardossy A (2012) Toward a more efficient calibration schema for HBV rainfall–runoff model. J Hydrol 445–446(11):161–179

    Article  Google Scholar 

  • Fallah-Mehdipour E, Haddad B, Mariño MA (2011) MOPSO algorithm and its application in multipurpose multireservoir operation. J Hydroinf 13(4):794–811

    Article  Google Scholar 

  • Fallah-Mehdipour E, Haddad B, Mariño MA (2012) Developing reservoir operational decision rule by genetic programming. J Hydroinf. doi:10.2166/hydro.2012.140

  • Fallah-Mehdipour E, Bozorg Haddad O, Mariño MA (2013) Extraction of multi-crop planning rules in a reservoir system: application of evolutionary algorithms. J Irrig Drain Eng (ASCE). doi:10.1061/(ASCE)IR.1943-4774.0000572

  • Gaur S, Sudheer Ch, Graillot D, Chahar BR, Kumar DN (2012) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resour Manag, (in press)

  • Ghajarnia N, Bozorg Haddad O, Mariño MA (2011) Performance of a novel hybrid algorithm in the design of water networks. Proc Inst Civ Eng Water Manag 164(4):173–191

    Article  Google Scholar 

  • Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8(2):212–229

    Article  Google Scholar 

  • Izquierdo J, Montalvo I, Perez R, Fuertes V (2008) Design optimization of wastewater collection network by PSO. Comput Math Appl 56(3):777–784

    Article  Google Scholar 

  • Karahan H, Ayvaz MT (2005) Transient groundwater modeling using spreadsheets. Adv Eng Softw 36(6):374–384

    Article  Google Scholar 

  • Karimi-Hosseini A, Bozorg Haddad O, Mariño MA (2011) Site selection of raingauges using entropy methodologies. Proc Inst Civ Eng Water Manag 164(7):321–333

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of International Conference on Neural Networks, Perth, Australia. IEEE Service Center, Piscataway, NJ, pp 1942–1948

  • Khu S-T, Madsen H, Pierro FD (2008) Incorporating multiple observations for distributed hydrologic model calibration: an approach using a multi-objective evolutionary algorithm and clustering. Adv Water Resour 13(10):1387–1398

    Article  Google Scholar 

  • Kumar N, Reddy MJ (2012) Multipurpose reservoir operation using particle swarm optimization. J Water Resour Plan Manag (ASCE) 133(3):192–201

    Article  Google Scholar 

  • Lewis RM, Torczo V (2000) Pattern search methods for linearly constrained minimization. SIAM J Optim 10(3):917–941

    Article  Google Scholar 

  • Matott LS, Rabideau AJ, Craig JR (2006) Pump-and treat optimization using analytic element method flow models. Adv Water Resour 29(5):760–775

    Article  Google Scholar 

  • Neelakantan TR, Pundarikanthan NV (1999) Hedging rule optimisation for water supply reservoirs system. Water Resour Manag 13(6):409–426

    Article  Google Scholar 

  • Noory H, Liaghat AM, Parsinejad M, Bozorg Haddad O (2012) Optimizing irrigation water allocation and multicrop planning using discrete PSO algorithm. J Irrig Drain Eng 138(5):437–444

    Article  Google Scholar 

  • Orouji H, Bozorg Haddad O, Fallah-Mehdipour E, Mariño MA (2013) Estimation of Muskingum parameter by meta-heuristic algorithms. Proc Inst Civ Eng Water Manag 166(1):1–10. doi:10.1680/wama.11.00068

    Google Scholar 

  • Ostadrahimi L, Mariño MA, Afshar A (2012) Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26(2):407–427

    Article  Google Scholar 

  • Rasoulzadeh-Gharibdousti S, Bozorg Haddad O, Mariño MA (2011) Optimal design and operation of pumping stations using NLP-GA. Proc Inst Civ Eng Water Manag 164(4):163–171

    Article  Google Scholar 

  • Saadatpour M, Afshar A (2013) Multi objective simulation-optimization approach in pollution spill response management model in reservoirs. Water Resour Manag. doi:10.1007/s11269-012-0230-y

  • Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrig Drain Eng (ASCE) 5(1):348–359

    Article  Google Scholar 

  • Schoups G, Addams CL, Gorelick SM (2005) Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrol Earth Syst Sci 9(5):549–568

    Article  Google Scholar 

  • Sun AY, Green R, Swenson S, Rodell M (2012) Toward calibration of regional groundwater models using GRACE data. J Hydrol 422–423(23):1–9

    Article  Google Scholar 

  • Suribabu CR, Neelakantan TR (2006) Design of water distribution networks using particle swarm optimization. Urban Water J 3(2):111–120

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology. Wiley, New York, pp 415–418

  • Tung YK (1984) River flood routing by nonlinear Muskingum method. J Hydraul Eng ASCE 111(12):1447–1460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bozorg Haddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, O.B., Tabari, M.M.R., Fallah-Mehdipour, E. et al. Groundwater Model Calibration by Meta-Heuristic Algorithms. Water Resour Manage 27, 2515–2529 (2013). https://doi.org/10.1007/s11269-013-0300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0300-9

Keywords