Skip to main content

Advertisement

Log in

A Novel Image Impulse Noise Removal Algorithm Optimized for Hardware Accelerators

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Images are often corrupted with noise during the image acquisition and transmission stage. Here, we propose a novel approach for the reduction of random-valued impulse noise in images and its hardware implementation on various state-of-the-art FPGAs. The presented algorithm consists of two stages in which the first stage detects whether pixels have been corrupted by impulse noise and the second stage performs a filtering operation on the detected noisy pixels. The human visual system is sensitive to the presence of edges in any image therefore the filtering stage consists of an edge preserving median filter which performs the filtering operation while preserving the underlying fine image features. Experimentally, it has been found that the proposed scheme yields a better Peak Signal-to-Noise Ratio (PSNR) compared to other existing median-based impulse noise filtering schemes. The algorithm is implemented using the high-level synthesis tool PARO as a highly parallel and deeply pipelined hardware design that simultaneously exploits loop level as well as instruction level parallelism with a very short latency of only few milliseconds for 16 bit images of size 512 × 512 pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Notes

  1. for the sake of brevity of the text, we have mentioned SMV for 3 ≤ n ≤ 5.

  2. Available as part of the USC-SIPI image database.

References

  1. The Concise Encyclopedia of Statistics. Springer, New York (2008).

  2. Aizenberg, I., & Butakoff, C. (2004). Effective impulse detector based on rank-order criteria. IEEE Signal Processing Letters, 11(3), 363–366. doi:10.1109/LSP.2003.822925.

    Article  Google Scholar 

  3. Altera Corp (2013). Altera SDK for OpenCL Programming Guide.

  4. Arvind, N.R. (2008). Hands-on Introduction to Bluespec System Verilog (BSV). In 6th ACM/IEEE International Conference on Formal Methods and Models for Co-Design, 2008. MEMOCODE 2008, pp 205–206. doi:10.1109/MEMCOD.2008.4547713.

  5. Bhadouria, V.S., & Ghoshal D. (2015). A study on genetic expression programming-based approach for impulse noise reduction in images. Signal, Image and Video Processing pp 1–10, doi:10.1007/s11760-015-0780-6.

  6. Bhadouria, V.S., Ghoshal, D., & Siddiqi, A.H. (2014). A new approach for high density saturated impulse noise removal using decision-based coupled window median filter. Signal, Image and Video Processing, 8(1), 71–84.

    Article  Google Scholar 

  7. Calypto Design Systems Inc (2012). Calypto Product Family Datasheet.

  8. Chen, T., & Wu, H.R. (2001). Adaptive impulse detection using center-weighted median filters. IEEE Signal Processing Letters, 8(1), 1–3.

    Article  Google Scholar 

  9. Dong, Y., & Xu, S. (2007). A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Processing Letters, 14(3), 193–196. doi:10.1109/LSP.2006.884014.

    Article  Google Scholar 

  10. Eng, H.L., & Ma, K.K. (2001). Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing, 10(2), 242–251. doi:10.1109/83.902289.

    Article  MATH  Google Scholar 

  11. Esakkirajan, S., Veerakumar, T., Subramanyam, A., & PremChand, C. (2011). Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Processing Letters, 18(5), 287–290. doi:10.1109/LSP.2011.2122333.

    Article  Google Scholar 

  12. Feautrier P., & Lengauer C. (2011). Polyhedron model. In Padua DA (ed) Encyclopedia of Parallel Computing, Springer, pp 1581–1592. doi:10.1007/978-0-387-09766-4_502.

  13. Fischer, V., Lukac, R., & Martin, K. (2005). Cost-effective video filtering solution for real-time vision systems. EURASIP Journal on Applied Signal Processing, 2005, 2026–2042.

    Article  Google Scholar 

  14. Gonzalez, R.C., & Woods, R.E. (2002). Digital image processing. Engle-wood Cliffs: Prentice-Hall.

    Google Scholar 

  15. Gupta, S., Dutt, N., Gupta, R., & Nicolau, A. (2003). SPARK: A High-Level Synthesis Framework for Applying Parallelizing Compiler Transformations. In Proceedings of the 16th International Conference on VLSI Design, pp 461–466.

  16. Hannig, F. (2009). Scheduling techniques for high-throughput loop accelerators. Dissertation, University of Erlangen-Nuremberg, Germany, Verlag Dr Hut, Munich, Germany.

  17. Hannig, F., Ruckdeschel, H., Dutta, H., & Teich, J. (2008). In PARO: Synthesis of hardware accelerators for multi-dimensional dataflow-intensive applications Proceedings of the Fourth International Workshop on Applied Reconfigurable Computing (ARC), Springer, Lecture Notes in Computer Science (LNCS), vol 4943, pp 287–293. doi:10.1007/978-3-540-78610-8_30.

  18. Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(1), 13–18. doi:10.1109/TASSP.1979.1163188.

    Article  Google Scholar 

  19. Hwang, H., & Haddad, R. (1995). Adaptive median filters: new algorithms and results. IEEE Transactions on Image Processing, 4(4), 499–502. doi:10.1109/83.370679.

    Article  Google Scholar 

  20. Lien, C.Y., Huang, C.C., Chen, P.Y., & Lin, Y.F. (2013). An efficient denoising architecture for removal of impulse noise in images. IEEE Transactions on Computers, 62(4), 631–643. doi:10.1109/TC.2011.256.

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, W. (2006). An efficient detail-preserving approach for removing impulse noise in images. IEEE Signal Processing Letters, 13(7), 413–416. doi:10.1109/LSP.2006.873144.

    Article  Google Scholar 

  22. Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In Computer vision (ICCV), 2013 IEEE International Conference on, IEEE, pp 49-56.

  23. Matsubara T., Moshnyaga V.G., & Hashimoto K. (2010). A fpga implementation of low-complexity noise removal. In 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2010, IEEE, pp 255–258.

  24. Petrovic, N., & Crnojevic, V. (2008). Universal impulse noise filter based on genetic programming. IEEE Transactions on Image Processing, 17(7). doi:10.1109/TIP.2008.924388.

  25. Saeedi, J., Moradi, M.H, & Faez, K. (2010). A new wavelet-based fuzzy single and multi-channel image denoising. Image and Vision Computing, 28(12), 1611–1623. doi:10.1016/j.imavis.2010.04.004.

    Article  Google Scholar 

  26. Schmid, M., Hannig, F., Tanase, A., & Teich, J. (2014). High-level synthesis revised – Generation of FPGA accelerators from a domain-specific language using the polyhedron model. In Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol 25, IOS Press, Amsterdam, The Netherlands, pp 497–506. doi:10.3233/978-1-61499-381-0-497.

  27. Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., & Kerre, E. (2006). Fuzzy two-step filter for impulse noise reduction from color images. IEEE Transactions on Image Processing, 15(11), 3567–3578. doi:10.1109/TIP.2006.877494.

    Article  Google Scholar 

  28. Schulte, S., Nachtegael, M., De Witte, V., Van der Weken, D., & Kerre, E. (2006). A fuzzy impulse noise detection and reduction method. IEEE Transactions on Image Processing, 15(5), 1153–1162. doi:10.1109/TIP.2005.864179.

    Article  Google Scholar 

  29. Toh, K., & Isa, N. (2010). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284. doi:10.1109/LSP.2009.2038769.

    Article  Google Scholar 

  30. Villarreal, J., Park, A., Najjar, W., & Halstead, R. (2010). Designing Modular Hardware Accelerators in C with ROCCC 2.0. Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 0, 127–134. doi:10.1109/FCCM.2010.28.

    Google Scholar 

  31. Xilinx Inc (2013). Vivado Design Suite User Guide - High-Level synthesis.

  32. Xiong, B., & Yin, Z. (2012). A universal denoising framework with a new impulse detector and nonlocal means. IEEE Transactions on Image Processing, 21(4), 1663–1675. doi:10.1109/TIP.2011.2172804.

    Article  MathSciNet  Google Scholar 

  33. Xue, J. (1997). Unimodular transformations of non-perfectly nested loops. Parallel Computing, 22, 1621–1645.

    Article  MathSciNet  MATH  Google Scholar 

  34. Yagou, H., Ohtake, Y., & Belyaev, A. (2002). Mesh smoothing via mean and median filtering applied to face normals. In Geometric Modeling and Processing, 2002. Proceedings, pp 124–131. doi:10.1109/GMAP.2002.1027503.

  35. Yang, Q., Ahuja, N., & Tan, K.H. (2014). Constant time median and bilateral filtering. International Journal of Computer Vision, 1–12.

  36. Yu, H., Zhao, L., & Wang, H. (2008). An efficient procedure for removing random-valued impulse noise in images. IEEE Signal Processing Letters, 15, 922–925. doi:10.1109/LSP.2008.2005051.

    Article  Google Scholar 

  37. Zhang, Q., Xu, L., & Jia, J. (2014). 100+ times faster weighted median filter (wmf). In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp 2830–2837. doi:10.1109/CVPR.2014.362.

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Center “Invasive Computing” (SFB/TR 89).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh Bhadouria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadouria, V.S., Tanase, A., Schmid, M. et al. A Novel Image Impulse Noise Removal Algorithm Optimized for Hardware Accelerators. J Sign Process Syst 89, 225–242 (2017). https://doi.org/10.1007/s11265-016-1187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1187-5

Keywords

Navigation