Skip to main content
Log in

Retinal Vessel Radius Estimation and a Vessel Center Line Segmentation Method Based on Ridge Descriptors

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper studies the retinal vessel radius estimation and proposes a segmentation method for vessel center lines based on ridge descriptors. The study on radius estimation reveals that the radius estimation by the matched filters based on the second order derivatives of Gaussian kernels is only correct at the vessel center. The relation between the vessel radius and the scale of the Gaussian kernel in the estimation method based on the normalized largest curvature is also studied. The ridge descriptor proposed in this paper contains the normalized largest curvature and the orientations of gradients in the local neighborhood. For vessels of a certain scale, the distribution of the descriptors is assumed to be a normal distribution and is learned from a training set with known truth. Vessel center line segmentation can be then performed based on the distance between the ridge descriptor at candidate pixels and the learned model. Evaluation of the vessel center line segmentation based on the descriptors is done on both DRIVE and STARE databases using the receiver operating characteristic (ROC) curves. The areas under the ROC curves on DRIVE and STARE databases are 0.9584 and 0.9421 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kanski, J. J. (1989). Clinical ophthalmology: A systematic approach. London: Butterworth-Heinemann.

    Google Scholar 

  2. Klonoff, D. C., & Schwartz, D. M. (2000). An economic analysis of interventions for diabetes. Diabetes Care, 23(3), 390–404.

    Article  Google Scholar 

  3. Martinez-Perez, M. E., Hughes, A. D., Stanton, A. V., Thom, S. A., Chapman, N., Bharah, A. B., et al. (2002). Retinal vascular tree morphology: A semi-automatic quantification. IEEE Transactions on Biomedical Engineering, 49(8), 912–917, August.

    Article  Google Scholar 

  4. Staal, J., Abrmoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4), 501–509, April.

    Article  Google Scholar 

  5. Chutatape, O., Zheng, L., & Krishman, S. (1998). Retinal blood vessel detection and tracking by matched gaussian and kalman filters. In Proceedings of IEEE international conference of engineering in medicine and biology society (Vol. 20, pp. 3144–3149).

  6. Tolias, Y. A., & Panas, S. M. (1998). A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17, 263–273, April.

    Article  Google Scholar 

  7. Can, A., Turner, J., Tanenbaum, H., & Roysam, B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Biomedical Engineering, 3(2), 125–138.

    Google Scholar 

  8. Gagnon, L., Lalonde, M., Beaulieu, M., & Boucher, M.-C. (2001). Procedure to detect anatomical structures in optical fundus images. In Proceedings of SPIE medical imaging: Image processing (Vol. 4322, pp. 1218–1225).

  9. Hoover, A., Kouznetsova, V., & Goldbaum, M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3), 203–210.

    Article  Google Scholar 

  10. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., & Goldbaum, M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 8(3), 263–269, September.

    Article  Google Scholar 

  11. Gang, L., Chutatape, O., & Krishnan, S. M. (2002). Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian. IEEE Transactions on Biomedical Engineering, 49(2), 168–172, February.

    Article  Google Scholar 

  12. Sofka, M., & Stewar, C. V. (2005). Retinal vessel extraction using multiscale matched filters confidence and edge measures. Technical Report 05-20, The Department of Computer Science, Rensselaer Polytechnic Institute, 16 August 2005.

  13. Pinz, A., Bernogger, S., Datlinger, P., & Kruger, A. (1998). Mapping the human retina. IEEE Transactions on Medical Imaging, 17(4), 606–619, August.

    Article  Google Scholar 

  14. Jiang, X., & Mojon, D. (2003). Adaptive local thresholding by verification-based multi-threshold probing with application to vessel detection in retinal images. Transactions on Pattern Analysis and Machine Intelligence, 25(1), 131–137, January.

    Article  Google Scholar 

  15. Mahadevan, V., Narasimha-Iyer, H., Roysam, B., & Tanenbaum, H. (2004). Robust model-based vasculature detection in noisy biomedical imagings. IEEE Transaction on Information Technology in Biomedicine, 8(3), 360–376.

    Article  Google Scholar 

  16. McInerney, T., & Terzopoulos, D. (2000). T-snakes: Topology adaptive snakes. Medical Image Analysis, 4(2), 73–91.

    Article  Google Scholar 

  17. Wu, C., & Agam, G. (2007). Probabilistic retinal vessel segmentation. In Proceedings of SPIE international symposium on medical imaging. San Diego, California, Feburary.

  18. Zana, F., & Klein, J. C. (2001). Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7), 1010–1019 (July).

    Article  MATH  Google Scholar 

  19. Leandro, J., Cesar, J. R., & Jelinek, H. (2001). Blood vessels segmentation in retina: Preliminary assessment of the mathematical morphology and of the wavelet transform techniques. In Proceedings of XIV Brazilian symposium on computer graphics and image processing, (pp. 84–90), 15–18 October.

  20. Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1496, 130–137.

    Article  Google Scholar 

  21. Li, Q. (2003). Selective enhancement filters for vessels and airway walls in two- and three-dimensional CT scans. Medical Physics, 30(8), 2040–2051.

    Article  Google Scholar 

  22. Sinthanayothin, C., Boyce, J., Cook, H., & Williamson, T. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmol, 83(8), 902–910, August.

    Article  Google Scholar 

  23. Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2), 117–156.

    Article  Google Scholar 

  24. Kalitzin, S. N., Staal, J., ter Haar Romeny, B. M., & Viergever, M. A. (2001). A computational method for segmenting topological point-sets and application to image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5), 447–459, May.

    Article  Google Scholar 

  25. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., & Abrmoff, M. (2004). Comparative study of retinal vessel segmentation methods on a new publicly available database. In J. M. Fitzpatrick & M. Sonka (Eds.), Proceedings of SPIE medical imaging (Vol. 5370, pp. 648–656). Bellingham: SPIE.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Ilya Kudish in the Department of Mathematics at Kettering University. The discussion with Prof. Kudish is very helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Kang Derwent, J.J. & Stanchev, P. Retinal Vessel Radius Estimation and a Vessel Center Line Segmentation Method Based on Ridge Descriptors. J Sign Process Syst Sign Image Video Technol 55, 91–102 (2009). https://doi.org/10.1007/s11265-008-0217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0217-3

Keywords

Navigation