Skip to main content
Log in

Serial and Parallel FPGA-based Variable Block Size Motion Estimation Processors

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

H.264/AVC is the latest video coding standard adopting variable block size motion estimation (VBS-ME), quarter-pixel accuracy, motion vector prediction and multi-reference frames for motion estimation. These new features result in much higher computation requirements than previous coding standards. In this paper we propose a novel most significant bit (MSB) first bit-serial architecture for full-search block matching VBS-ME, and compare it with systolic implementations. Since the nature of MSB-first processing enables early termination of the sum of absolute difference (SAD) calculation, the average hardware performance can be enhanced. Five different designs, one and two dimensional systolic and tree implementations along with bit-serial, are compared in terms of performance, pixel memory bandwidth, occupied area and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Wieg and Ed. Pattaya, “Draft ITU-T Recommendation H.264 and Draft ISO/IEC 14496-10 AVC,” in JVC of ISO/IEC and ITU-T SG16/Q.6 Doc. JVT-G050, 2003, Mar.

  2. Y. Kamaci and N. Altunbasak, “Performance Comparison of the Emerging H.264 Video Coding Standard with the Existing Standards,” in ICME’03, 2003, pp. 345–348.

  3. T. Kormarek and P. Pirsch, “Array Architectures for Block Matching Algorithms,” IEEE Trans. Circuits Syst., vol. 36, no. 10, 1989, pp. 1301–1308.

    Article  Google Scholar 

  4. K. Yang, M. Sun and L. We, “A Family of VLSI Designs for the Motion Compensation Block-matching Algorithm,” ACM Trans. Comput. Syst., vol. 36, 1989, pp. 1317–1325, Oct.

    Google Scholar 

  5. C. L. Su and C. W. Jen, “Motion Estimation Using On-line Arithmetic,”. in Proc. IEEE Intl. Symp. Circuits System, vol. 1, 2000, pp. 683–686.

    Google Scholar 

  6. S.-S. Lin, P.-C. Tseng and L.-G. Chen, “Low-power Parallel Tree Architecture for Full Search Block-matching Motion Estimation,” in Proc. IEEE Intl Symp. Circuits and Systems, vol. 2, 2004, pp. 313–316, May.

    Google Scholar 

  7. T. Koga, K. Iinuna, A. Hirano, Y. Iijima and T. Ishiguro, “Motion Compensated Interframe Coding for Video Conferencing,” in Proc. of National Telecomm. Conf, (New Orleans), 1981, pp. G531–G535, Nov.

  8. W. Lee, Y. Kim, R. J. Gove, and C. J. Read, “Media Station 5000: Integrating Video and Audio,” IEEE Trans. Multimedia, vol. 1, no. 2, 1994, pp. 50–61.

    Article  Google Scholar 

  9. H. Loukil, F. Ghozzi, and A. Samet, “Hardware Implementation of Block Matching Algorithm with FPGA Technology,” in IEEE Int. Conf. Microelectronics, vol. 16, 2004, pp. 542–546.

    Google Scholar 

  10. M. Mohammadzadeh, M. Eshghi, and M. Azadfar, “An Optimized Systolic Array Architecture for Full Search Block Matching Algorithm and its Implementation on FPGA Chips,” in IEEE Int. Conf. NEWCAS, vol. 3, 2005, pp. 327–330.

    Google Scholar 

  11. S. Wong, B. Stougie, and S. Cotofana, “Alternatives in FPGA-based SAD Implementations,” in IEEE Int. Conf. Field Programmable Logic, 2002, pp. 449–452, Dec.

  12. S. Wong, S. Vassiliadis, and S. Cotofana, “A Sum of Absolute Differences Implementation in FPGA Hardware,” in Proc. 28th Euromico Conf., 2002, pp. 183–188, Sept.

  13. C. L. Su and C. W. Jen, “Motion Estimation using MSD-first Processing,” in Proc. IEEE Circuits, Device and Systems, vol. 150, no. 2, 2003, pp. 124–133.

    Article  Google Scholar 

  14. J. Olivares and J. Hormigo, “Minimum Sum of Absolute Differences Implementation in a Single FPGA Device,” in IEEE Int. Conf. on Field Programmable Logic, vol. 3203, 2004, pp. 986–990.

    Google Scholar 

  15. C. Wei and M. Z. Gang, “A Novel SAD Computing Hardware Architecture for Variable-size Block Matching Estimation and its Implementation with FPGA,” in Proc. 5th Int. Conf. ASIC, vol. 2, 2003, pp. 950–953.

    Google Scholar 

  16. S. Lopez, F. Tobajas, A. Villar, V. de Armas, J. Lopez, and R. Sarmiento, “Low Cost Efficient Architecture for H.264 Motion Estimation,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, 2005, pp. 412–415.

    Article  Google Scholar 

  17. P. M. Kuhn, G. Diebel, S. Herrmann, A. Keil, H. Mooshofer, A. Kaup, R. M. Mayer, and W. Stechele, “Complexity and PSNR Comparison of Several Fast Motion Estimation Algorithms for MPEG-4,” Proc. SPIE, vol. 3460, 1998, pp. 486–489.

    Article  Google Scholar 

  18. J. R. Jain and A. K. Jain, “Displacement Measurement and its Application in Interframe Image Coding,” IEEE Trans. Commun., vol. 29, no. 12, 1981, pp. 1799–1808.

    Article  Google Scholar 

  19. S. Zhu and K. K. Ma, “A New Diamond Search Algorithm for Fast Block Matching Motion Estimation,” IEEE Trans. Image Process., vol. 9, no. 2, 2000, pp. 287–290.

    Article  MathSciNet  Google Scholar 

  20. C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G. Chen, “Analysis and Architecture Design of Variable Block Size Motion Estimation for H.264/AVC,” IEEE Trans. Circuits Syst., vol. 53, no. 3, 2006, pp. 578–593.

    Article  Google Scholar 

  21. C. Y. Cho, S. Y. Huang, and J. S. Wong, “An Embedded Merging Scheme for H.264/AVC Motion Estimation,” in IEEE Int. Conf. Image Proc., vol. 3, 2005, pp. 1016–1019, Sept.

    Article  Google Scholar 

  22. M. D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann, 2004.

  23. M. D. Ercegovac and T. Lang, “On-Line Arithmetic: A Design Methodology and Applications,” in Proc. IEEE workshop. VLSI Signal Processing, 1988, pp. 252–263.

  24. J. Villalba, J. Hormigo, J. M. prades, and E. L. Zapata, “On-line Multioperand Addition Based on On-line Full Adders,” in IEEE Intl. Conf. on App. Specific systems, 2005, pp. 322–327, July.

  25. C. Ou, C. F. Le, and W. J. Hwang, “An Efficient VLSI Architecture for H.264 Variable Block Size Motion Estimation,” IEEE Trans. Signal Process., vol. 51, no. 4, 2005, pp. 1291–1299.

    Google Scholar 

  26. M. Kim, I. Hwang, and S. I. Chae, “A fast VLSI Architecture for Full-search Variable Block Size Motion Estimation in MPEG-4 AVC/H.264,” in Proc. ASP-DAC, vol. 1, 2005, pp. 631–634, Jan.

    Article  Google Scholar 

  27. S. Y. Yap and J. V. McCanny, “A VLSI Architecture for Advanced Video Coding Motion Estimation,” in Proc. IEEE Intl. Conf. application-specific systems, arch., processors, 2003, pp. 293–301, June.

  28. S. Y. Yap and J. V. McCanny, “A VLSI Architecture for Variable Block Size Video Motion Estimation,” IEEE Trans. Circuits Syst., vol. 51, no. 7, 2004, pp. 384–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. W. Leong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B.M.H., Leong, P.H.W. Serial and Parallel FPGA-based Variable Block Size Motion Estimation Processors. J Sign Process Syst Sign Image 51, 77–98 (2008). https://doi.org/10.1007/s11265-007-0143-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-007-0143-9

Keywords

Navigation