Skip to main content

Advertisement

Log in

Intra-host mutation rate of acute SARS-CoV-2 infection during the initial pandemic wave

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

SARS-CoV-2 mutation is minimized through a proofreading function encoded by NSP-14. Most estimates of the SARS-CoV-2 mutation rate are derived from population based sequence data. Our understanding of SARS-CoV-2 evolution might be enhanced through analysis of intra-host viral mutation rates in specific populations. Viral genome analysis was performed between paired samples and mutations quantified at allele frequencies (AF) ≥ 0.25, ≥ 0.5 and ≥ 0.75. Mutation rate was determined employing F81 and JC69 evolution models and compared between isolates with (ΔNSP-14) and without (wtNSP-14) non-synonymous mutations in NSP-14 and by patient comorbidity. Forty paired samples with median interval of 13 days [IQR 8.5–20] were analyzed. The estimated mutation rate by F81 modeling was 93.6 (95%CI 90.8–96.4], 40.7 (95%CI 38.9–42.6) and 34.7 (95%CI 33.0–36.4) substitutions/genome/year at AF ≥ 0.25, ≥ 0.5, ≥ 0.75 respectively. Mutation rate in ΔNSP-14 were significantly elevated at AF ≥ 0.25 vs wtNSP-14. Patients with immune comorbidities had higher mutation rate at all allele frequencies. Intra-host SARS-CoV-2 mutation rates are substantially higher than those reported through population analysis. Virus strains with altered NSP-14 have accelerated mutation rate at low AF. Immunosuppressed patients have elevated mutation rate at all AF. Understanding intra-host virus evolution will aid in current and future pandemic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Esper FP, Cheng Y-W, Adhikari TM, Tu ZJ, Li D, Li EA, Farkas DH, Procop GW, Ko JS, Chan TA, Jehi L, Rubin BP, Li J (2021) Genomic epidemiology of SARS-CoV-2 infection during the initial pandemic wave and association with disease severity. JAMA Netw Open 4:e217746

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34:4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mercatelli D, Holding AN, Giorgi FM (2021) Web tools to fight pandemics: the COVID-19 experience. Brief Bioinform 22:690

    Article  CAS  PubMed  Google Scholar 

  4. Nextstrain. https://nextstrain.org/ncov/gisaid/global/6m?l=clock. Accessed April 2023

  5. Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng W-L (2020) Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol Cell 79:710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z (2015) Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc Natl Acad Sci U S A 112:9436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tahir M (2021) Coronavirus genomic nsp14‐ExoN, structure, role, mechanism, and potential application as a drug target. J Med Virol 93:4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ (2020) Coronavirus genomic nsp14‐ExoN, structure, role, mechanism, and potential application as a drug target. J Virol 94:e01246

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu JC-C, Laurent-Rolle M, Pawlak JB, Wilen CB, Cresswell P (2021) Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci U S A 118:e2101161118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li W, Su Y-Y, Zhi S-S, Huang J, Zhuang C-L, Bai W-Z, Wan Y, Meng X-R, Zhang L, Zhou Y-B, Luo Y-Y, Ge S-X, Chen Y-K, Ma Y (2020) Virus shedding dynamics in asymptomatic and mildly symptomatic patients infected with SARS-CoV-2. Clin Microbiol Infect 26:1556.e1

    Article  CAS  PubMed  Google Scholar 

  11. Wang R, Hozumi Y, Zheng Y-H, Yin C, Wei G-W (2020) Host immune response driving SARS-CoV-2 evolution. Viruses 12:E1095

    Article  Google Scholar 

  12. Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN, Anzick SL, Barbian K, Judson SD, Fischer ER, Martens C, Bowden TA, de Wit E, Riedo FX, Munster VJ (2020) Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 183:1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonnleitner ST, Prelog M, Sonnleitner S, Hinterbichler E, Halbfurter H, Kopecky DBC, Almanzar G, Koblmüller S, Sturmbauer C, Feist L, Horres R, Posch W, Walder G (2022) Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 13:2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leung WF, Chorlton S, Tyson J, Al-Rawahi GN, Jassem AN, Prystajecky N, Masud S, Deans GD, Chapman MG, Mirzanejad Y, Murray MCM, Wong PHP (2022) COVID-19 in an immunocompromised host: persistent shedding of viable SARS-CoV-2 and emergence of multiple mutations: a case report. Int J Infect Dis 114:178

    Article  CAS  PubMed  Google Scholar 

  15. Braun KM, Moreno GK, Wagner C, Accola MA, Rehrauer WM, Baker DA, Koelle K, O’Connor DH, Bedford T, Friedrich TC, Moncla LH (2021) Acute SARS-CoV-2 infections harbor limited within-host diversity and transmit via tight transmission bottlenecks. PLoS Pathog 17:e1009849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pei L, Chen Y, Zheng X, Gong F, Liu W, Lin J, Zheng R, Yang Z, Bi Y, Chen E (2023) Comorbidities prolonged viral shedding of patients infected with SARS-CoV-2 omicron variant in Shanghai: a multi-center, retrospective, observational study. J Infect Public Health 16:182

    Article  PubMed  Google Scholar 

  17. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang Y-P, Boerwinkle E, Fu Y-X (2004) Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shrestha NK, Marco Canosa F, Nowacki AS, Procop GW, Vogel S, Fraser TG, Erzurum SC, Terpeluk P, Gordon SM (2020) Distribution of transmission potential during nonsevere COVID-19 illness. Clin Infect Dis 71(11):2927–2932

    Article  CAS  PubMed  Google Scholar 

  19. Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, Young JB, Kattan MW (2020) Individualizing risk prediction for positive coronavirus disease 2019 testing. Chest 158:1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paragon Genomics. https://www.paragongenomics.com/product/cleanplex-sars-cov-2-flex-panel/. Accessed April 2023

  21. Wang Y, Wang D, Zhang L, Sun W, Zhang Z, Chen W, Zhu A, Huang Y, Xiao F, Yao J, Gan M, Li F, Luo L, Huang X, Zhang Y, Wong S-S, Cheng X, Ji J, Ou Z, Xiao M, Li M, Li J, Ren P, Deng Z, Zhong H, Xu X, Song T, Mok CKP, Peiris M, Zhong N, Zhao J, Li Y, Li J, Zhao J (2021) Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med 13:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. ArXiv preprint arXiv:12073907. https://doi.org/10.48550/arXiv.1207.3907

    Article  Google Scholar 

  23. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 6:80

    Article  CAS  PubMed  Google Scholar 

  24. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G, Trebes A, Andersson M, Otecko N, Wise EL, Moore N, Lynch J, Kidd S, Cortes N, Mori M, Williams R, Vernet G, Justice A, Green A, Nicholls SM, Ansari MA, Abeler-Dörner L, Moore CE, Peto TEA, Eyre DW, Shaw R, Simmonds P, Buck D, Todd JA, Connor TR, Ashraf S, da Silva Filipe A, Shepherd J, Thomson EC, Bonsall D, Fraser C, Golubchik T, Oxford Virus Sequencing Analysis Group (OVSG) COVID-19 Genomics UK (COG-UK) Consortium (2021) SARS-CoV-2 within-host diversity and transmission. Science. https://doi.org/10.1126/science.abg0821

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koboldt DC (2020) Best practices for variant calling in clinical sequencing. Genome Med 12:91

    Article  PubMed  PubMed Central  Google Scholar 

  27. World Health Organization (2021) Genomic Sequencing of SARS-CoV-2: A Guide to Implementation for Maximum Impact on Public Health, 8 January 2021. World Health Organization, Geneva

    Google Scholar 

  28. Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368

    Article  CAS  PubMed  Google Scholar 

  29. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism Acadamic press. Elsevier, Amsterdam

    Google Scholar 

  30. Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer, New York, NY

    Google Scholar 

  31. Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, Phalke S, Velu GSK (2022) SARS-CoV-2 mutations and their impact on diagnostics, therapeutics and vaccines. Front Med 9:815389

    Article  Google Scholar 

  32. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P, Baele G (2020) Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. https://doi.org/10.1093/ve/veaa061

    Article  PubMed  PubMed Central  Google Scholar 

  33. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, Rambaut A, Suchard MA, Wertheim JO, Lemey P (2020) The emergence of SARS-CoV-2 in Europe and North America. Science 370:564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim S, Nguyen TT, Taitt AS, Jhun H, Park H-Y, Kim S-H, Kim Y-G, Song EY, Lee Y, Yum H, Shin K-C, Choi YK, Song C-S, Yeom SC, Kim B, Netea M, Kim S (2021) Omicron mutation is faster than the chase: multiple mutations on spike/ACE2 interaction residues. Immune Netw 21:e38

    Article  PubMed  PubMed Central  Google Scholar 

  35. A. L. Valesano, K. E. Rumfelt, D. E. Dimcheff, C. N. Blair, W. J. Fitzsimmons, J. G. Petrie, E. T. Martin, and A. S. Lauring, BioRxiv 2021.01.19.427330 (2021).

  36. Al Khatib HA, Benslimane FM, Elbashir IE, Coyle PV, Al Maslamani MA, Al-Khal A, Al Thani AA, Yassine HM (2020) Within-host diversity of SARS-CoV-2 in COVID-19 patients with variable disease severities. Front Cell Infect Microbiol 10:575613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Du P, Yang L, Zhang J, Song C, Chen D, Song Y, Ding N, Hua M, Han K, Song R, Xie W, Chen Z, Wang X, Liu J, Xu Y, Gao G, Wang Q, Pu L, Di L, Li J, Yue J, Han J, Zhao X, Yan Y, Yu F, Wu AR, Zhang F, Gao YQ, Huang Y, Wang J, Zeng H, Chen C (2022) Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep 38:110205

    Article  CAS  PubMed  Google Scholar 

  38. Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, Zhou Z, Yang J, Zhong J, Yang D, Guo L, Zhang G, Li H, Xu Y, Chen M, Gao Z, Wang J, Ren L, Li M (2021) Corrigendum to: genomic diversity of severe acute respiratory syndrome–coronavirus 2 in patients with coronavirus disease 2019. Clin Infect Dis 73:2374

    Article  PubMed  Google Scholar 

  39. Tay JH, Porter AF, Wirth W, Duchene S (2022) The emergence of SARS-CoV-2 variants of concern is driven by acceleration of the substitution rate. Mol Biol Evol. https://doi.org/10.1093/molbev/msac013

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eskier D, Suner A, Oktay Y, Karakülah G (2020) Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. PeerJ 8:e10181

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takada K, Ueda MT, Watanabe T, Nakagawa S (2020) Genomic diversity of SARS-CoV-2 can be accelerated by a mutation in the Nsp14 gene. Iscience 2(1):265

    Google Scholar 

  42. Niu X, Kong F, Hou YJ, Wang Q (2021) Crucial mutation in the exoribonuclease domain of nsp14 of PEDV leads to high genetic instability during viral replication. Cell Biosci 11:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. V. Nussenblatt, A. E. Roder, S. Das, E. de Wit, J.-H. Youn, S. Banakis, A. Mushegian, C. Mederos, W. Wang, M. Chung, L. Pérez-Pérez, T. Palmore, J. N. Brudno, J. N. Kochenderfer, and E. Ghedin, MedRxiv 2021.10.02.21264267 (2021).

  44. Chaguza C, Hahn AM, Petrone ME, Zhou S, Ferguson D, Breban MI, Pham K, Peña-Hernández MA, Castaldi C, Hill V, Schulz W, Swanstrom RI, Roberts SC, Grubaugh ND, Yale SARS-CoV-2 Genomic Surveillance Initiative (2022) Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Reports Medicine 4(2):32

    Google Scholar 

  45. Choudhary MC, Crain CR, Qiu X, Hanage W, Li JZ (2022) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence characteristics of coronavirus disease 2019 (COVID-19) persistence and reinfection. Clin Infect Dis 74:237

    Article  CAS  PubMed  Google Scholar 

  46. Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L, Zuñiga S (2016) Mutagenesis of coronavirus nsp14 reveals Its potential role in modulation of the innate immune response. J Virol 90:5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Daniel H. Farkas, PhD and Charles Foster MD for their kind insight and thoughtful review of the project

Funding

This research was supported through the Ellen and Steven Ross Fellowship Research Award, Cleveland Clinic Children’s IF-110077. This project was supported in part by NSF IIS-2027667 and NSF CCF-2200255 (JL and FE), NSF CCF-2006780 (JL), NSF CCF-1815139 (JL) and through unrestricted funds from the Robert J. Tomsich Pathology and Laboratory Medicine Institute. Ellen and Steven Ross Fellowship Research Award, IF-110077, IF-110077, IF-110077, IF-110077, IF-110077,IF-110077, National Science Foundation,CCF-1815139, National Science Foundation,United States, CCF-2006780, CCF-2200255

Author information

Authors and Affiliations

Authors

Contributions

KEH, FE, and BR conceptualized and directed this research. TA, XL, XZ and JL, developed methodology, and performed evolutionary modeling and mutation statistics. TJ and YC assisted in sample acquisition, Illumina sequencing and pipeline development. DR and JK assisted in study design, sample identification and acquisition. SW assisted in statistics review. All authors contributed to discussions and manuscript preparation.

Corresponding authors

Correspondence to Kim El-Haddad or Frank P. Esper.

Ethics declarations

Competing interests

DDR performs collaborative research that is sponsored by industry collaborators: BD, bioMerieux, Cepheid, Cleveland Diagnostics, Hologic, Luminex, Q-Linea, Qiagen, Roche, Specific Diagnostics, Thermo Fisher, and Vela. DDR is or has been on advisory boards for Luminex, Talis Biomedical, and Thermo Fisher. FE has served as a consultant to Proctor & Gamble. The remaining authors have or do not have an association that might pose a conflict of interest.

Additional information

Edited by Juergen Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1427 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Haddad, K., Adhikari, T.M., Tu, Z. et al. Intra-host mutation rate of acute SARS-CoV-2 infection during the initial pandemic wave. Virus Genes 59, 653–661 (2023). https://doi.org/10.1007/s11262-023-02011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02011-0

Keywords

Navigation