Skip to main content
Log in

Structure and function of the parvoviral NS1 protein: a review

  • Review Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Parvoviruses possess a single-stranded DNA genome of about 5 kb, which contains two open reading frames (ORFs), one encoding nonstructural (NS) proteins, the other capsid proteins. The NS1 protein contains an N-terminal origin-binding domain, a helicase domain, and a C-terminal transactive domain, and is essential for effective viral replication and production of infectious virus. We first summarize the developments in the structure of NS1 protein, including the original binding domain and the helicase domain. We discuss the role of different DNA substrates in the oligomerization of these two domains of NS1. During the parvovirus life cycle, the NS1 protein is closely related to the viral gene expression, viral replication, and infection. We provide the current understanding of the impact of parvovirus NS1 protein mutations on its biological properties. Overall, in this review, we focus on the structure and function of the parvoviral NS1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Hu B, Lu R, Ma F, Lv S, Zhang H, Bai X, Zhang L, Shi N, Li X, Fan S, Lian S, Yan X, Zhu Y (2021) Pathogenicity comparison of the SMPV-11 and attenuated mink enteritis virus F61 in mink. Virus Res 294:198294. https://doi.org/10.1016/j.virusres.2021.198294

    Article  CAS  PubMed  Google Scholar 

  2. Lin P, Cheng Y, Song S, Qiu J, Yi L, Cao Z, Li J, Cheng S, Wang J (2019) Viral nonstructural protein 1 induces mitochondrion-mediated apoptosis in mink enteritis virus infection. J Virol. https://doi.org/10.1128/JVI.01249-19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang SS, Wang J, Li Z, Cui S, Liu W (2018) The 5′ untranslated region of the capsid protein 2 gene of mink enteritis virus is essential for its expression. J Virol. https://doi.org/10.1128/JVI.00787-18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, Mietzsch M, Modha S, Ogliastro M, Penzes JJ, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Ictv Report C (2019) ICTV virus taxonomy profile: parvoviridae. J Gen Virol 100:367–368. https://doi.org/10.1099/jgv.0.001212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mietzsch M, Penzes JJ, Agbandje-McKenna M (2019) Twenty-five years of structural parvovirology. Viruses. https://doi.org/10.3390/v11040362

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mattola S, Hakanen S, Salminen S, Aho V, Mantyla E, Ihalainen TO, Kann M, Vihinen-Ranta M (2021) Concepts to reveal parvovirus-nucleus interactions. Viruses. https://doi.org/10.3390/v13071306

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang X, Zhang J, Huo S, Zhang Y, Wu F, Cui D, Yu H, Zhong F (2020) Development of a monoclonal antibody against canine parvovirus NS1 protein and investigation of NS1 dynamics and localization in CPV-infected cells. Protein Expr Purif 174:105682. https://doi.org/10.1016/j.pep.2020.105682

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Liu Y, Chen Y, Zhang T, Wang A, Wei Q, Liu D, Wang F, Zhang G (2021) Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet Microbiol 253:108974. https://doi.org/10.1016/j.vetmic.2020.108974

    Article  CAS  PubMed  Google Scholar 

  9. Meszaros I, Olasz F, Csagola A, Tijssen P, Zadori Z (2017) Biology of porcine parvovirus (ungulate parvovirus 1). Viruses. https://doi.org/10.3390/v9120393

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen S, Miao B, Chen N, Chen C, Shao T, Zhang X, Chang L, Zhang X, Du Q, Huang Y, Tong D (2021) Syncrip facilitates porcine parvovirus viral DNA replication through the alternative splicing of NS1 mRNA to promote NS2 mRNA formation. Vet Res 52:73. https://doi.org/10.1186/s13567-021-00938-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raab U, Beckenlehner K, Lowin T, Niller HH, Doyle S, Modrow S (2002) NS1 protein of parvovirus B19 interacts directly with DNA sequences of the P6 promoter and with the cellular transcription factors sp1/sp3. Virology 293:86–93. https://doi.org/10.1006/viro.2001.1285

    Article  CAS  PubMed  Google Scholar 

  12. Corbau R, Duverger V, Rommelaere J, Nuesch JP (2000) Regulation of MVM NS1 by protein kinase C: Impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 278:151–167. https://doi.org/10.1006/viro.2000.0600

    Article  CAS  PubMed  Google Scholar 

  13. Miao B, Chen S, Zhang X, Ma P, Ma M, Chen C, Zhang X, Chang L, Du Q, Huang Y, Tong D (2021) T598 and T601 phosphorylation sites of canine parvovirus NS1 are crucial for viral replication and pathogenicity. Vet Microbiol 264:109301. https://doi.org/10.1016/j.vetmic.2021.109301

    Article  CAS  PubMed  Google Scholar 

  14. Niskanen EA, Kalliolinna O, Ihalainen TO, Hakkinen M, Vihinen-Ranta M (2013) Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J Virol 87:11762–11774. https://doi.org/10.1128/JVI.01678-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ganaie SS, Qiu J (2018) Recent advances in replication and infection of human parvovirus B19. Front Cell Infect Microbiol 8:166. https://doi.org/10.3389/fcimb.2018.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niskanen EA, Ihalainen TO, Kalliolinna O, Hakkinen MM, Vihinen-Ranta M (2010) Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1. J Virol 84:5391–5403. https://doi.org/10.1128/JVI.02221-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tewary SK, Liang L, Lin Z, Lynn A, Cotmore SF, Tattersall P, Zhao H, Tang L (2015) Structures of minute virus of mice replication initiator protein N-terminal domain: insights into DNA nicking and origin binding. Virology 476:61–71. https://doi.org/10.1016/j.virol.2014.11.022

    Article  CAS  PubMed  Google Scholar 

  18. Cotmore SF, Tattersall P (2013) Parvovirus diversity and DNA damage responses. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a012989

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F (2004) The nuclease domain of Adeno-associated virus Rep coordinates replication initiation using two distinct DNA recognition interfaces. Mol Cell 13:403–414

    Article  CAS  PubMed  Google Scholar 

  20. Singleton MR, Wigley DB (2002) Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol 184:1819–1826. https://doi.org/10.1128/JB.184.7.1819-1826.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Musayev FN, Zarate-Perez F, Bardelli M, Bishop C, Saniev EF, Linden RM, Henckaerts E, Escalante CR (2015) Structural studies of AAV2 Rep68 reveal a partially structured linker and compact domain conformation. Biochemistry 54:5907–5919. https://doi.org/10.1021/acs.biochem.5b00610

    Article  CAS  PubMed  Google Scholar 

  22. Zarate-Perez F, Mansilla-Soto J, Bardelli M, Burgner JW, Villamil-Jarauta M, Kekilli D, Samso M, Linden RM, Escalante CR (2013) Oligomeric properties of adeno-associated virus Rep68 reflect its multifunctionality. J Virol 87:1232–1241. https://doi.org/10.1128/JVI.02441-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31. https://doi.org/10.1016/j.jsb.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  24. Hickman AB, Dyda F (2005) Binding and unwinding: SF3 viral helicases. Curr Opin Struct Biol 15:77–85. https://doi.org/10.1016/j.sbi.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  25. James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK (2003) Crystal structure of the SF3 helicase from Adeno-associated virus type 2. Structure 11:1025–1035. https://doi.org/10.1016/s0969-2126(03)00152-7

    Article  CAS  PubMed  Google Scholar 

  26. Santosh V, Musayev FN, Jaiswal R, Zarate-Perez F, Vandewinkel B, Dierckx C, Endicott M, Sharifi K, Dryden K, Henckaerts E, Escalante CR (2020) The Cryo-EM structure of AAV2 Rep68 in complex with ssDNA reveals a malleable AAA+ machine that can switch between oligomeric states. Nucleic Acids Res 48:12983–12999. https://doi.org/10.1093/nar/gkaa1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mansilla-Soto J, Yoon-Robarts M, Rice WJ, Arya S, Escalante CR, Linden RM (2009) DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68. PLoS Pathog 5:e1000513. https://doi.org/10.1371/journal.ppat.1000513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarasova E, Dhindwal S, Popp M, Hussain S, Khayat R (2021) Mechanism of DNA interaction and translocation by the replicase of a circular Rep-encoding single-stranded DNA virus. MBio 12:e0076321. https://doi.org/10.1128/mBio.00763-21

    Article  PubMed  Google Scholar 

  29. Cotmore SF, Gottlieb RL, Tattersall P (2007) Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 81:13015–13027. https://doi.org/10.1128/JVI.01703-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Willwand K, Moroianu A, Horlein R, Stremmel W, Rommelaere J (2002) Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication. J Gen Virol 83:1659–1664. https://doi.org/10.1099/0022-1317-83-7-1659

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC (2016) DNA binding and cleavage by the human parvovirus B19 NS1 nuclease domain. Biochemistry 55:6577–6593. https://doi.org/10.1021/acs.biochem.6b00534

    Article  CAS  PubMed  Google Scholar 

  32. Zhang JG, Xu C, Zhang L, Zhu W, Shen H, Deng HW (2019) Identify gene expression pattern change at transcriptional and post-transcriptional levels. Transcription 10:137–146. https://doi.org/10.1080/21541264.2019.1575159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Majewska M, Wysokinska H, Kuzma L, Szymczyk P (2018) Eukaryotic and prokaryotic promoter databases as valuable tools in exploring the regulation of gene transcription: a comprehensive overview. Gene 644:38–48. https://doi.org/10.1016/j.gene.2017.10.079

    Article  CAS  PubMed  Google Scholar 

  34. Hristov G, Kramer M, Li J, El-Andaloussi N, Mora R, Daeffler L, Zentgraf H, Rommelaere J, Marchini A (2010) Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 84:5909–5922. https://doi.org/10.1128/JVI.01797-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis C, Segev-Amzaleg N, Rotem I, Mincberg M, Amir N, Sivan S, Gitelman I, Tal J (2003) The P4 promoter of the parvovirus minute virus of mice is developmentally regulated in transgenic P4-LacZ mice. Virology 306:268–279. https://doi.org/10.1016/s0042-6822(02)00020-x

    Article  CAS  PubMed  Google Scholar 

  36. Paglino J, Burnett E, Tattersall P (2007) Exploring the contribution of distal P4 promoter elements to the oncoselectivity of minute virus of mice. Virology 361:174–184. https://doi.org/10.1016/j.virol.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  37. Malerba M, Nikolova D, Cornelis J, Iggo R (2006) Targeting of autonomous parvoviruses to colon cancer by insertion of Tcf sites in the P4 promoter. Cancer Gene Ther 13:273–280. https://doi.org/10.1038/sj.cgt.7700904

    Article  CAS  PubMed  Google Scholar 

  38. Deleu L, Pujol A, Faisst S, Rommelaere J (1999) Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection. J Virol 73:3877–3885. https://doi.org/10.1128/JVI.73.5.3877-3885.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meir C, Mincberg M, Rostovsky I, Tal S, Vollmers EM, Levi A, Tattersall P, Davis C (2017) The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 506:141–151. https://doi.org/10.1016/j.virol.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  40. Zadori Z, Szelei J, Tijssen P (2005) Sat: A late NS protein of porcine parvovirus. J Virol 79:13129–13138. https://doi.org/10.1128/JVI.79.20.13129-13138.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meszaros I, Toth R, Olasz F, Tijssen P, Zadori Z (2017) The SAT protein of porcine parvovirus accelerates viral spreading through induction of irreversible endoplasmic reticulum stress. J Virol. https://doi.org/10.1128/JVI.00627-17

    Article  PubMed  PubMed Central  Google Scholar 

  42. Deleu L, Pujol A, Nuesch JPF, Rommelaere J (2001) Inhibition of transcription-regulating properties of nonstructural protein 1 (NS1) of parvovirus minute virus of mice by a dominant-negative mutant form of NS1. J Gen Virol 82:1929–1934. https://doi.org/10.1099/0022-1317-82-8-1929

    Article  CAS  PubMed  Google Scholar 

  43. Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ (2010) Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLoS Pathog 6:e1001141. https://doi.org/10.1371/journal.ppat.1001141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weitzman MD, Carson CT, Schwartz RA, Lilley CE (2004) Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 3:1165–1173. https://doi.org/10.1016/j.dnarep.2004.03.018

    Article  CAS  PubMed  Google Scholar 

  45. Majumder K, Wang J, Boftsi M, Fuller MS, Rede JE, Joshi T, Pintel DJ (2018) Parvovirus minute virus of mice interacts with sites of cellular DNA damage to establish and amplify its lytic infection. Elife. https://doi.org/10.7554/eLife.37750

    Article  PubMed  PubMed Central  Google Scholar 

  46. Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ (2020) The NS1 protein of the parvovirus MVM aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathog 16:e1009002. https://doi.org/10.1371/journal.ppat.1009002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou Y, Jin XH, Jing YX, Song Y, He XX, Zheng LL, Wang YB, Wei ZY, Zhang GP (2017) Porcine parvovirus infection activates inflammatory cytokine production through Toll-like receptor 9 and NF-κB signaling pathways in porcine kidney cells. Vet Microbiol 207:56–62. https://doi.org/10.1016/j.vetmic.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  48. Jin X, Yuan Y, Zhang C, Zhou Y, Song Y, Wei Z, Zhang G (2020) Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway. J Vet Sci 21:e50. https://doi.org/10.4142/jvs.2020.21.e50

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao L, Chen J, Wei Y, Shi H, Zhang X, Yuan J, Shi D, Liu J, Zhu X, Wang X, Cui S, Feng L (2017) Porcine parvovirus induces activation of NF-κB signaling pathways in PK-15 cells mediated by Toll-like receptors. Mol Immunol 85:248–255. https://doi.org/10.1016/j.molimm.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Wang J, Mao Y, Xi J, Yu Y, Liu W (2017) Induction and suppression of type I interferon responses by Mink enteritis virus in CRFK cells. Vet Microbiol 199:8–14. https://doi.org/10.1016/j.vetmic.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  51. Kvansakul M (2017) Viral infection and apoptosis. Viruses. https://doi.org/10.3390/v9120356

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, Tiwari AK (2016) Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res 213:46–61. https://doi.org/10.1016/j.virusres.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Fan J, Li Y, Liang S, Huo S, Wang X, Zuo Y, Cui D, Li W, Zhong Z, Zhong F (2019) Porcine parvovirus infection causes pig placenta tissue damage involving nonstructural protein 1 (NS1)-induced intrinsic Ros/mitochondria-mediated apoptosis. Viruses. https://doi.org/10.3390/v11040389

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WL, QX; Writing—original draft preparation: QX; Writing—review and editing: WL, QX, JW; Supervision: CG, WL.

Corresponding author

Correspondence to Weiquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This study required no ethical clearance.

Additional information

Edited by Joachim J. Bugert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Wang, J., Gu, C. et al. Structure and function of the parvoviral NS1 protein: a review. Virus Genes 59, 195–203 (2023). https://doi.org/10.1007/s11262-022-01944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01944-2

Keywords

Navigation