Skip to main content
Log in

Complete genome sequence analysis of the Malacosoma neustria nucleopolyhedrovirus from Turkey

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The lackey moth, Malacosoma neustria (Linnaeus, 1758), a worldwide pest, causes extensive economic losses particularly on hazelnut, plum, oak, poplar, and willow trees. A baculovirus, Malacosoma neustria nucleopolyhedrovirus (ManeNPV-T2), has been isolated from the larvae collected in Turkey and appears to have a potential as a microbial control agent. In this study, we describe the complete genome sequence of ManeNPV-T2 and compare it to other sequenced baculovirus genomes. The ManeNPV-T2 genome is a circular double-stranded DNA molecule of 130,202 bp, has 38.2% G + C, and is predicted to contain 131 putative open reading frames (ORFs) each with a coding capacity of more then 50 amino acids. There are 27 ORFs with unknown function of which 6 are unique to ManeNPV-T2. Eleven homologous regions (hrs) and two bro genes (bro-a and bro-b) were identified in the genome. There are two homologues of chaB and nicotinamide riboside kinase-1 genes, separated from themselves with a few nucleotides. Additionally, ac145, thought to be per os infectivity factor (pif) gene, is also found as two homologues. All 38 core genes are found in the ManeNPV-T2 genome. The phylogenetic tree of ManeNPV-T2 in relation to 50 other baculoviruses whose genomes have been completely sequenced showed ManeNPV-T2 to be closely related to the group II NPVs. This study expands our knowledge on baculoviruses, describes the characterization ManeNPV, and ultimately contributes to the registration of this virus as a microbial pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Theilmann DA, Blissard GW, Bonning B, Jehle JA, O’Reilly DR, Rohrmann GF, Thiem SVJ (2005) Baculoviridae. In: Fauquet CX, Mayo MA, Maniloff J, Desselberger UBLA (eds) Virus taxonomy-classification and nomenclature of viruses. 8th Report of the international committee on the taxonomy of viruses, 8th edn. Elsevier, Amsterdam, pp 177–185

    Google Scholar 

  2. Demir I, Nalcacioglu R, Demirbag Z (2008) The significance of insect viruses in biotechnology. Tarım Bilim Derg 14(2):193–201 (in Turkish with English abstract)

    Google Scholar 

  3. Slack J, Arif BM (2007) The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69:99–165. https://doi.org/10.1016/S0065-3527(06)69003-9

    Article  CAS  PubMed  Google Scholar 

  4. Ackermann HW, Smirnoff WA (1983) A morphological investigation of 23 baculoviruses. J Invertebr Pathol 41:269–280. https://doi.org/10.1016/0022-2011(83)90244-6

    Article  Google Scholar 

  5. Jehle JA, Lange M, Wang H et al (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193. https://doi.org/10.1016/j.virol.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  6. Rohrmann G (2011) The AcMNPV genome: gene content, conservation, and function. In: Rohrmann G (ed) Baculovirus molecular biology. National Library of Medicine (US), Bethesda

    Google Scholar 

  7. Blissard GW, Wenz JR (1992) Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66:6829–6835

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bulach DM, Kumar CA, Zaia A et al (1999) Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol 73:59–73. https://doi.org/10.1006/jipa.1998.4797

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Y, Deng F, Rayner S et al (2009) Evidence of a major role of GP64 in group I alphabaculovirus evolution. Virus Res 142:85–91. https://doi.org/10.1016/j.virusres.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  10. Santos ER, Oliveira LB, Peterson L et al (2018) The complete genome sequence of the first hesperiid-infecting alphabaculovirus isolated from the leguminous pest Urbanus proteus (Lepidoptera: Hesperiidae). Virus Res 249:76–84. https://doi.org/10.1016/j.virusres.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Harrison RL, Rowley DL, Mowery JD et al (2017) The Operophtera brumata nucleopolyhedrovirus (OpbuNPV) represents an early, divergent lineage within genus Alphabaculovirus. Viruses 9(10):307. https://doi.org/10.3390/v9100307

    Article  PubMed Central  Google Scholar 

  12. Ozbek H, Calmasur O (2005) A review of insects and mites associated with roses in Turkey. Acta Hortic 690:167–174. https://doi.org/10.17660/ActaHortic.2005.690.25

    Article  Google Scholar 

  13. Ministry of Agriculture of Turkey (2008) The agricultural control technical recommendations, vol. 4. Başak Publisher. Ankara (in Turkish)

    Google Scholar 

  14. Ozbek H, Coruh S (2010) Egg parasitoids of Malacosoma neustria (Linnaeus, 1758) (Lepidoptera: Lasiocampidae) in Erzurum province of Turkey. Turk J Entomol 34:551–560

    Google Scholar 

  15. Kovaĉević Z (1926) Der Ringelspinner und der Schwammspinner und ihre Parasiten. Anzeiger für Schädlingskd 2:93–94. https://doi.org/10.1007/BF02340344

    Article  Google Scholar 

  16. Demir I, Gürel N, Nalcacioglu R et al (2009) Productive replication of Malacosoma neustria nucleopolyhedrovirus (ManeNPV) in Md203 cell line. Turk J Biol 33:239–248. https://doi.org/10.3906/biy-0805-5

    Article  CAS  Google Scholar 

  17. Keddie B, Erlandson M, Hilchie G (1995) Establishment and characterization of three Malacosoma disstria cell lines. J Invertebr Pathol 66:136–142. https://doi.org/10.1006/jipa.1995.1076

    Article  Google Scholar 

  18. Demir I, Gürel N, Nalcacioglu R, Demirbag Z (2009) Comparative susceptibilities of six insect cell lines to infection by Malacosoma neustria nucleopolyhedrovirus (ManeNPV). Turk J Biol 33:259–273. https://doi.org/10.3906/biy-0808-9

    Article  CAS  Google Scholar 

  19. Demir I, Nalcacioglu R, Mohammad Gholizad L, Demirbag Z (2013) Characterization of a new isolate of Malacosoma neustria nucleopolyhedrovirus (ManeNPV) from Turkey. Turk J Biol 37:385–391. https://doi.org/10.3906/biy-1209-24

    Article  CAS  Google Scholar 

  20. Demir I, Nalcacioglu R, Mohammad Gholi̇zad L, Demirbag Z (2014) A highly effective nucleopolyhedrovirus against Malacosoma spp. (Lepidoptera: Lasiocampidae) from Turkey: isolation, characterization, phylogeny, and virulence. Turk J Agric For 38:462–470. https://doi.org/10.3906/tar-1307-32

    Article  CAS  Google Scholar 

  21. Reed C, Otvos IS, Reardon R et al (2003) Effects of long-term storage on the stability of OpMNPV DNA contained in TM Biocontrol-1. J Invertebr Pathol 84:104–113. https://doi.org/10.1016/j.jip.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kraemer L, Beszteri B, Gäbler-Schwarz S et al (2009) STAMP: extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design. BMC Bioinform 10:41. https://doi.org/10.1186/1471-2105-10-41

    Article  CAS  Google Scholar 

  24. Solovyev VV, Salamov AA (1999) INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects. Nucleic Acids Res 27:248–250. https://doi.org/10.1093/nar/27.1.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu ZH, Arif BM, Jin F et al (1998) Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 79:2841–2851. https://doi.org/10.1099/0022-1317-79-11-2841

    Article  CAS  PubMed  Google Scholar 

  26. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  28. Vlak JM, Smith GE (1982) Orientation of the genome of Autographa californica nuclear polyhedrosis virus: a proposal. J Virol 41:1118–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayakawa T, Ko R, Okano K et al (1999) Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 262:277–297. https://doi.org/10.1006/viro.1999.9894

    Article  CAS  PubMed  Google Scholar 

  30. Ijkel WFJ, Van Strien EA, Heldens JGM et al (1999) Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol 80:3289–3304. https://doi.org/10.1099/0022-1317-80-12-3289

    Article  CAS  PubMed  Google Scholar 

  31. Garavaglia MJ, Miele SAB, Iserte JA et al (2012) The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. J Virol 86:12069–12079. https://doi.org/10.1128/JVI.01873-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lauzon HAM, Lucarotti CJ, Krell PJ et al (2004) Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. Society 78:7023–7035. https://doi.org/10.1128/JVI.78.13.7023

    Article  CAS  Google Scholar 

  33. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628. https://doi.org/10.1146/annurev.micro.53.1.577

    Article  CAS  PubMed  Google Scholar 

  34. Lapointe R, Popham HJR, Straschil U et al (2004) Characterization of two Autographa californica nucleopolyhedrovirus proteins, Ac145 and Ac150, which affect oral infectivity in a host-dependent manner. J Virol 78:6439–6448. https://doi.org/10.1128/JVI.78.12.6439-6448.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zemskov EA, Kang W, Maeda S (2000) Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol 74:6784–6789. https://doi.org/10.1128/JVI.74.15.6784-6789.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kikhno IM, Strokovskaya LI, Meleshko RA et al (2002) Physical mapping of Malacosoma neustria nuclear polyhedrosis virus genome and its modification in Antheraea pernyi cell culture. Biopolym Cell 18:522–528. https://doi.org/10.7124/bc.000630

    Article  CAS  Google Scholar 

  37. de Castro Oliveira JV, Wolff JLC, Garcia-Maruniak A et al (2006) Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J Gen Virol 87:3233–3250. https://doi.org/10.1099/vir.0.82161-0

    Article  CAS  Google Scholar 

  38. Ayres MD, Howard SC, Kuzio J et al (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605. https://doi.org/10.1006/viro.1994.1380

    Article  CAS  PubMed  Google Scholar 

  39. Ikeda M, Shikata M, Shirata N et al (2006) Gene organization and complete sequence of the Hyphantria cunea nucleopolyhedrovirus genome. J Gen Virol 87:2549–2562. https://doi.org/10.1099/vir.0.81930-0

    Article  CAS  PubMed  Google Scholar 

  40. Ahrens CH, Russell RLQ, Funk CJ et al (1997) The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 399:381–399. https://doi.org/10.1006/viro.1997.8448

    Article  Google Scholar 

  41. Nakai M, Goto C, Kang W et al (2003) Genome sequence and organization of a nucleopolyhedrovirus isolated from the smaller tea tortrix, Adoxophyes honmai. Virology 316:171–183. https://doi.org/10.1016/S0042-6822(03)00599-3

    Article  CAS  PubMed  Google Scholar 

  42. Hilton S, Winstanley D (2008) Genomic sequence and biological characterization of a nucleopolyhedrovirus isolated from the summer fruit tortrix, Adoxophyes orana. J Gen Virol 89:2898–2908. https://doi.org/10.1099/vir.0.2008/002881-0

    Article  CAS  PubMed  Google Scholar 

  43. Wennmann JT, Gueli Alletti G, Jehle JA (2015) The genome sequence of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) reveals a new baculovirus species within the Agrotis baculovirus complex. Virus Genes 50:260–276. https://doi.org/10.1007/s11262-014-1148-7

    Article  CAS  PubMed  Google Scholar 

  44. Zhu Z, Yin F, Liu X et al (2014) Genome sequence and analysis of Buzura suppressaria nucleopolyhedrovirus: a group II Alphabaculovirus. PLoS ONE 9:e86450. https://doi.org/10.1371/journal.pone.0086450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pang Y, Yu J, Wang L et al (2001) Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287:391–404. https://doi.org/10.1006/viro.2001.1056

    Article  CAS  PubMed  Google Scholar 

  46. Willis LG, Siepp R, Stewart TM et al (2005) Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene. Virology 338:209–226. https://doi.org/10.1016/j.virol.2005.04.041

    Article  CAS  PubMed  Google Scholar 

  47. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67:2168–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68:2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pijlman GP, Pruijssers AJP, Vlak JM (2003) Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. J Gen Virol 84:2041–2049. https://doi.org/10.1099/vir.0.19133-0

    Article  CAS  PubMed  Google Scholar 

  50. Peng K, van Oers MM, Hu Z et al (2010) Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J Virol 84:9497–9504. https://doi.org/10.1128/JVI.00812-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Theilmann DA, Stewart S (1992) Tandemly repeated sequence at the 3′ end of the IE-2 gene of the baculovirus Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus is an enhancer element. Virology 187:97–106. https://doi.org/10.1016/0042-6822(92)90298-4

    Article  CAS  PubMed  Google Scholar 

  52. Kuzio J, Pearson MN, Harwood SH et al (1999) Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 34:17–34

    Article  Google Scholar 

  53. Hilton S, Winstanley D (2007) Identification and functional analysis of the origins of DNA replication in the Cydia pomonella granulovirus genome. J Gen Virol 88:1496–1504. https://doi.org/10.1099/vir.0.82760-0

    Article  CAS  PubMed  Google Scholar 

  54. Carstens EB, Wu Y (2007) No single homologous repeat region is essential for DNA replication of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 88:114–122. https://doi.org/10.1099/vir.0.82384-0

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Zhu Z, Zhang L et al (2016) Genome sequencing and analysis of Catopsilia pomona nucleopolyhedrovirus: a distinct species in group I Alphabaculovirus. PLoS ONE. https://doi.org/10.1371/journal.pone.0155134

    Article  PubMed  PubMed Central  Google Scholar 

  56. Castro MEB, Ribeiro ZMA, Santos ACB et al (2009) Identification of a new nucleopolyhedrovirus from naturally-infected Condylorrhiza vestigialis (Guenée) (Lepidoptera: Crambidae) larvae on poplar plantations in South Brazil. J Invertebr Pathol 102:149–154. https://doi.org/10.1016/j.jip.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  57. Pearson M, Bjornson R, Pearson G, Rohrmann GF (1992) The Autographa californica baculovirus genome: evidence for multiple replication origins. Science 257:1382–1384. https://doi.org/10.1126/science.1529337

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Graduate Scholarship (2211-A) provided to Donus Gencer through the Scientific and Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Contributions

Resources: RN, ZD, ID. Conceived and designed the experiments: DG, RN, ZD, ID. Performed the experiments: DG. Analyzed the data: DG, RN. Wrote the paper: DG, RN. Review and editing: ZD, ID.

Corresponding author

Correspondence to Ismail Demir.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Research involving human and animal participants

The research described in this paper does not use any human or animal subjects.

Additional information

Edited by A. Lorena Passarelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gencer, D., Nalcacioglu, R., Demirbag, Z. et al. Complete genome sequence analysis of the Malacosoma neustria nucleopolyhedrovirus from Turkey. Virus Genes 54, 706–718 (2018). https://doi.org/10.1007/s11262-018-1595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1595-7

Keywords

Navigation