Skip to main content
Log in

Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Bovine mastitis is one of the most costly diseases in dairy cows worldwide. It can be caused by over 150 different microorganisms, where Staphylococcus aureus is the most frequently isolated and a major pathogen responsible for heavy economic losses in dairy industry. Although antibiotic therapy is most widely used, alternative treatments are necessary due to the increasing antibiotic resistance. Using phage for pathogen control is a promising tool in the fight against antibiotic resistance. Mainly using high-throughput sequencing, bioinformatics and our proposed phage termini identification method, we have isolated and characterized a novel virulent phage, designated as vB_SauS_IMEP5, from manure collected from dairy farms in Shihezi, Xinjiang, China, for use as a biocontrol agent against Staphylococcus aureus infections. Its latent period was about 30 min and its burst size was approximately 272PFU/cell. Phage vB_SauS_IMEP5 survives in a wide pH range between 3 and 12. A treatment at 70 °C for 20 min can inactive the phage. Morphological analysis of vB_SauS_IMEP5 revealed that phage vB_SauS_IMEP5 morphologically resembles phages in the family Siphoviridae. Among our tested multiplicity of infections (MOIs), the optimal multiplicity of infection (MOI) of this phage was determined to be 0.001, suggesting that phage vB_SauS_IMEP5 has high bacteriolytic potential and good efficiency for reducing bacterial growth. The complete genome of IME-P5 is a 44,677-bp, linear, double-stranded DNA, with a G+C content of 34.26%, containing 69 putative ORFs. The termini of genome were determined with next-generation sequencing data using our previously proposed termini identification method, which suggests that this phage has non-redundant termini with 9nt 3′ protruding cohesive ends. The genomic and proteomic characteristics of IMEP5 demonstrate that this phage does not belong to any of the previously recognized Siphoviridae Staphylococcus phage groups, suggesting the creation of a new lineage, thus adding to the knowledge on the diversity of Staphylococcus phages. An N-acetylmuramoyl-l-alanine amidase gene and several conserved genes were predicted, while no virulence or antibiotic resistance genes were identified. This study isolated and characterized a novel S. aureus phage vB_SauS_IMEP5, and our findings suggest that this phage may be potentially utilized as a therapeutic or prophylactic candidate against S.aureus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

S. aureus:

Staphylococcus aureus

S. pneumoniae :

Streptococcus pneumoniae

MOI:

Optimal multiplicity of infection

References

  1. M.H. Adams, Bacteriophages (Interscience, New York, 1959)

    Google Scholar 

  2. M. Akkou, K. Antri, M.A. Bachtarzi, M. Bes, A. Tristan, O. Dauwalder, R. Kaidi, H. Meugnier, M. Tazir, J. Etienne, Phenotypic and genotypic characterization of Staphylococcus aureus strains associated with bovine mastitis and nasal carriage of workers in contact to animals in Algeria. Pak. Vet. J. 36, 184–188 (2016)

    Google Scholar 

  3. S.F. Altschul, T.L. Madden, A.A. Schffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Andrea, S. Carly, K. Kristina, E. Ralf, M. Stefan, S. Stefan, Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J. Antimicrob. Chemother. 65, 619–625 (2010)

    Article  Google Scholar 

  5. R.K. Aziz, D. Bartels, A.A. Best, M. Dejongh, T. Disz, R.A. Edwards, K. Formsma, S. Gerdes, E.M. Glass, M. Kubal, The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008)

    Article  Google Scholar 

  6. D.S. Bouchard, S. Bianca, S. Taous, R. Lucie, G. Pierre, G.M. Candelaria, F.M.E. Nader-Macias, B. Damien, F. Patrice, C. Victoria, Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis. PLoS ONE 10, e0144831 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. T. Brettin, J.J. Davis, T. Disz, R.A. Edwards, S. Gerdes, G.J. Olsen, R. Olson, R. Overbeek, B. Parrello, G.D. Pusch, RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  8. K. Carlson, Appendix: working with bacteriophages: common techniques and methodological approaches. Bacteriophages 1, 439–490 (2005)

    Google Scholar 

  9. E. Casey, J. Mahony, H. Neve, J.P. Noben, F. dal Bello, D. van Sinderen, Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl. Environ. Microbiol. 81, 1319–1326 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  10. N.M. Courchesne, A. Parisien, C.Q. Lan, Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat. Biotechnol. 3, 37–45 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. M. Deghorain, L. van Melderen, The Staphylococci phages family: an overview. Viruses 4, 3316–3335 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Delgado, P. Garcia, L. Fernndez, E. Jimnez, M. Rodrguez-Baños, R.D. Campo, J.M. Rodrguez, Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol. Med. Microbiol. 62, 225–235 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. R.S. Dias, M.R. Eller, V.S. Duarte, A.L. Pereira, C.C. Silva, H.C. Mantovani, L.L. Oliveira, E.D.A.M. Silva, S.O. de Paula, Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis. J. Anim. Sci. 91, 3930–3939 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. L. el Haddad, J.P. Roy, G.E. Khalil, D. St-Gelais, C.P. Champagne, S. Labrie, S. Moineau, Efficacy of two Staphylococcus aureus phage cocktails in cheese production. Int. J. Food Microbiol. 217, 7–13 (2016)

    Article  PubMed  Google Scholar 

  15. E.L. Ellis, M. Delbruck, The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Fonda, W. Chiu, J. Joya, S. Ramnath, M. Schwartz, Assessing Effectiveness of Pulsed Electromagnetic Field Therapy (PEMFT) Treatment of Cow Udders on Bovine Mastitis Causing Bacteria. CPP Student Research, Scholarship, & Creative Activities (RSCA) Conference CPP SRC (2015)

  17. W. Fu, F. Tmayer, Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54, 397–404 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. R. Gallet, Y. Shao, I.N. Wang, High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol. Biol. (2009). doi:10.1186/1471-2148-9-241

    Google Scholar 

  19. M.A. Hemminga, W.L. Vos, P.V. Nazarov, R.B. Koehorst, C.J. Wolfs, R.B. Spruijt, D. Stopar, Viruses: incredible nanomachines. New advances with filamentous phages. Eur. Biophys. J. 39, 541–550 (2010)

    Article  PubMed  Google Scholar 

  20. ICTV. 2015. Virus Taxonomy: 2015 Release [Online]. ICTV. http://www.ictvonline.org/virusTaxonomy.asp. Accessed 23 May 2016

  21. Z. Junmin, R. Xiancai, T. Yinling, X. Kun, H. Zhen, C. Zhijin, J. Xiaolin, L. Shu, C. Yao, H. Fuquan, Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. Genomics 96, 167–172 (2010)

    Article  Google Scholar 

  22. W. Kot, L.H. Hansen, H. Neve, K. Hammer, S. Jacobsen, P.D. Pedersen, S.J. Sorensen, K.J. Heller, F.K. Vogensen, Sequence and comparative analysis of Leuconostoc dairy bacteriophages. Int. J. Food Microbiol. 176, 29–37 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra, Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Z. Lili, B. Hongduo, W. Chengrui, Z. Hui, Z. Yan, W. Ran, Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China. Virus Genes 50, 111–117 (2014)

    Google Scholar 

  25. S. Lu, S. Le, Y. Tan, J. Zhu, M. Li, X. Rao, L. Zou, S. Li, J. Wang, X. Jin, Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS ONE 8, e62933 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A.C. Mapes, B.W. Trautner, K.S. Liao, R.F. Ramig, Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage 6, e1096995 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Overbeek, R. Olson, G.D. Pusch, G.J. Olsen, J.J. Davis, T. Disz, R.A. Edwards, S. Gerdes, B. Parrello, M. Shukla, The SEED and the Rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. M. Pastagia, R. Schuch, V.A. Fischetti, D.B. Huang, Lysins: the arrival of pathogen-directed anti-infectives. J. Med. Microbiol. 62, 1506–1516 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. F. Rohwer, R. Edwards, The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Sambrook, D. Russell, Molecular Cloning: A Laboratory Manual, 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001)

    Google Scholar 

  31. J.E. Samson, S. Moineau, Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages. Appl. Environ. Microbiol. 76, 6843–6852 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y.H. Schukken, J. Günther, J. Fitzpatrick, M.C. Fontaine, L. Goetze, O. Holst, J. Leigh, W. Petzl, H.J. Schuberth, A. Sipka, Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 144, 270–289 (2011)

    Article  PubMed  Google Scholar 

  33. A. Sulakvelidze, Z. Alavidze, J.J. Morris, Bacteriophage therapy. Annu. Rev. Microbiol. 45, 649–659 (2001)

    CAS  Google Scholar 

  34. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. I.N. Wang, D.L. Smith, R. Young, Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54, 799–825 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Wang, W. Wang, Y. Lv, W. Zheng, Z. Mi, G. Pei, X. An, X. Xu, C. Han, J. Liu, C. Zhou, Y. Tong, Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J. Gen. Virol. 95, 2565–2575 (2014)

    Article  PubMed  Google Scholar 

  38. X. Zhang, Y. Wang, S. Li, X. An, G. Pei, Y. Huang, H. Fan, Z. Mi, Z. Zhang, W. Wang, A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini. BMC Genom. 16, 1–11 (2015)

    Article  Google Scholar 

Download references

Authors’ contributions

Yigang Tong and Yonggang Qu conceived and designed the experiments and critically evaluated the manuscript. Xianglilan Zhang carried out the data analysis and wrote the manuscript. Qian Zhang isolated and identified the phage and carried out the experiments. Shaozhen Xing extracted the phage nucleotide. Qiang Sun analyzed the phage sequences. Guangqian Pei, Shi Cheng, Yannan Liu, and Xiaoping An conducted the sequencing experiments. All authors read and approved the final manuscript.

Funding

This research was supported by grants from The National Key Research and Development Program of China (2015AA020108, 2016YFC1202705, AWS16J020, and AWS15J006), the National Natural Science Foundation of China (81572045, 81672001, and 81621005), and the State Key Laboratory of Pathogen and biosecurity (SKLPBS1518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianglilan Zhang, Yonggang Qu or Yigang Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Edited by Joachim Jakob Bugert.

Genome accession number

The GenBank accession number for its complete nucleotide sequence is [GenBank: KX156762].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xing, S., Sun, Q. et al. Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes 53, 464–476 (2017). https://doi.org/10.1007/s11262-017-1445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1445-z

Keywords

Navigation