Skip to main content
Log in

Reflects the coat protein variability of apple mosaic virus host preference?

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Apple mosaic virus (ApMV) is a widespread ssRNA virus which infects diverse species of Rosales. The phylogenetic analysis of complete capsid protein gene of the largest set of ApMV isolates discriminated two main clusters of isolates: one cluster correlates with Maloideae hosts and Trebouxia lichen algae hosts; a second with hop, Prunus, and other woody tree hosts. No correlation was found between clusters and geographic origin of virus isolates, and positive selection hypothesis in distinct hosts was not confirmed: in all virus populations, purifying selection had occurred. GGT→AAT substitution resulted in Gly→Asn change inside the zinc-finger motif in the capsid protein was revealed specific for discrimination of the clusters and we hypothesise that could influence the host preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.P. White, Plant Dis. Rep. 12, 33–34 (1928)

    Google Scholar 

  2. J. Bujarski, M. Figlerowicz, D. Gallitelli, M.J. Roossinck, S.W. Scott, Genus Ilarvirus. in Virus taxonomy, Classification and nomenclature of viruses, eds by A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz. Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier Academic Press, Amsterdam, 2012) pp. 972–975

  3. CAB International, Crop Protection Compendium (CAB International, Wallingford, 2003)

    Google Scholar 

  4. I.E. Tzanetakis, R. Martin, Plant Dis. 89, 431 (2005)

    Article  Google Scholar 

  5. K. Petrzik, J. Vondrák, M. Barták, O. Peksa, O. Kubešová, Eur. J. Plant Pathol. (2013, in press)

  6. S. Paunovic, G. Pasquini, M. Barba, Apple mosaic virus in stone fruits, in Virus and virus-like diseases of pome and stone fruits, ed. by A. Hadidi, M. Barba, T. Candresse, W. Jelkmann (APS Press, St. Paul, 2011), pp. 91–95

    Google Scholar 

  7. D.R. Crowle, S.J. Pethybridge, G.W. Leggett, L.J. Sherriff, C.R. Wilson, Plant Pathol. 52, 655–662 (2003)

    Article  CAS  Google Scholar 

  8. R.W. Fulton, Apple mosaic virus. CMI/AAB Descriptions of plant viruses, 83 (Association of Applied Biologists, Wellesbourne, 1972)

  9. A. Hadidi, M. Barba, Economic impact of pome and stone fruit viruses and viroids, in Virus and virus-like diseases of pome and stone fruits, ed. by A. Hadidi, M. Barba, T. Candresse, W. Jelkmann (APS Press, St. Paul, 2011), pp. 1–7

    Google Scholar 

  10. A.J. Gibbs, D. Fargette, F. García-Arenal, M.J. Gibbs, J. Gen. Virol. 91, 13–22 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. K. Petrzik, Eur. J. Plant Pathol. 111, 355–360 (2005)

    Article  CAS  Google Scholar 

  12. K. Petrzik, O. Lenz, Arch. Virol. 147, 1275–1285 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. V. Lakshmi, V. Hallan, R. Ram, N. Ahmed, A.A. Zaidi, A. Varma, Indian J. Virol. 22, 44–49 (2011)

    Article  PubMed  Google Scholar 

  14. C. Desbiez, B. Moury, H. Lecoq, Infect. Genet. Evol. 11, 812–824 (2011)

    Article  PubMed  CAS  Google Scholar 

  15. R. Sanjuán, PLoS Pathog. 8(5), e1002685 (2012)

    Article  PubMed  Google Scholar 

  16. S.F. Elena, P. Agudelo-Romero, P. Carrasco, F.N. Codoner, S. Martín, C. Torres-Barceló, R. Sanjuán, Heredity 100, 478–483 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. E.A.G. van der Vossen, L. Neeleman, J.F. Bol, Virology 202, 891–903 (1994)

    Article  PubMed  Google Scholar 

  18. P. Ansel-McKinney, S.W. Scott, M. Swanson, X. Ge, L. Gehrke, EMBO J. 15, 5077–5084 (1996)

    PubMed  CAS  Google Scholar 

  19. P.C. Sehnke, A.M. Mason, S.J. Hood, R.M. Lister, J.E. Johnson, Virology 168, 48–56 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. J.A. Sánchez-Navarro, V. Pallás, J. Gen. Virol. 75, 1441–1445 (1994)

    Article  PubMed  Google Scholar 

  21. R.H. Alrefai, P.J. Shiel, L.L. Domier, C.J. D’Arcy, P.H. Berger, S.S. Korban, J. Gen. Virol. 75, 2847–2850 (1994)

    Article  PubMed  CAS  Google Scholar 

  22. D. Guo, E. Maiss, G. Adam, R. Casper, J. Gen. Virol. 76, 1073–1079 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. P.J. Shiel, R.H. Alrefai, L.L. Domier, S.S. Korban, P.H. Berger, Arch. Virol. 140, 1247–1256 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. G.P. Lee, K.H. Ryu, H.R. Kim, C.S. Kim, D.W. Lee, J.S. Kim, Plant Pathol. J. 18, 259–265 (2002)

    Article  Google Scholar 

  25. T. Thokchom, T. Rana, V. Hallan, R. Ram, A.A. Zaidi, Phytoparasitica 37, 375–379 (2009)

    Article  CAS  Google Scholar 

  26. M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Bioinformatics 23, 2947–2948 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. D. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. P. Librado, J. Rozas, Bioinformatics 25, 1451–1452 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. E.R. Chare, E.S. Holmes, J. Gen. Virol. 85, 3149–3157 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. F. Fonseca, J.D. Neto, V. Martins, G. Nolasco, Arch. Virol. 150, 1607–1619 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. S.S. Krishna, I. Majumdar, N.V. Grishin, Nucleic Acids Res. 31, 532–550 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. S.W. Scott, M.T. Zimmermann, X. Ge, D.J. MacKenzie, Eur. J. Plant Pathol. 104, 155-161 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Donato Boscia from Istituto di Virologia Vegetale CNR, UOS di Bari, Italy, for providing the infected material. This research was supported by S Grant from the Ministry of Education, Youth and Sports of the Czech Republic and Project No. MSM6046070901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Petrzik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Apple mosaic virus isolates with partial CP sequences. (DOC 64 kb)

Fig. S1

Clusters of 91 ApMV isolates based on the maximum likelihoodphylogenetic tree of 399 nt long central part of CP. Bootstrap values was applied using 1000 replicates. Asterisk (*) marks partial CP sequences. (DOC 151 kb)

Fig. S1

Amino acid alignment of selected isolates. The position of distinctive Gly7 in the zinc-finger motif is highlighted. (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimová, L., Winkowska, L., Ryšánek, P. et al. Reflects the coat protein variability of apple mosaic virus host preference?. Virus Genes 47, 119–125 (2013). https://doi.org/10.1007/s11262-013-0925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0925-z

Keywords

Navigation