Skip to main content
Log in

Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico

Virus Genes Aims and scope Submit manuscript

Abstract

In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.A. Mayo, Arch. Virol. 147, 1655 (2002)

    Article  PubMed  CAS  Google Scholar 

  2. O.S. de Leeuw, B.P.H. Peeters, J. Gen. Virol. 80, 131 (1999)

    PubMed  Google Scholar 

  3. D.J. Alexander, in Disease of Poultry, ed. by J.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald, D.E. Swayne, I.A. Ames (Iowa State University Press, Ames, 2003), p. 541

    Google Scholar 

  4. B.P.H. Peeters, O.S. de Leeuw, G. Koch, A.L.J. Gielkens, J. Virol. 73, 5001 (1999)

    PubMed  CAS  Google Scholar 

  5. E.W. Aldous, J.K. Mynn, J. Banks, D.J. Alexander, Avian Pathol. 32, 239 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. D. Ujvári, E. Wehmann, J. Herezeg, B. Lomniczi, J. Virol. Methods 131, 115 (2006)

    Article  PubMed  Google Scholar 

  7. A. Czeglédi, D. Ujvári, E. Somogyi, E. Wehmann, O. Werner, B. Lomniczi, Virus Res. 120, 36 (2006)

    Article  PubMed  Google Scholar 

  8. P.J. Miller, D.J. King, C.L. Afonso, D.L. Suarez, Vaccine 25, 7238 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. F. Perozo, R. Merino, C.L. Afonso, P. Villegaz, N. Calderon, Avian Dis. 52, 472 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. R. Merino, H. Villegas, J. Quintana, N. Calderon, Vet. Res. Commun. 33, 1023 (2009)

    Article  PubMed  Google Scholar 

  11. D.J. Alexander, in A Laboratory Manual for the Isolation and Identification of Avian Pathogens, ed. by H.G. Purchase, L.H. Arp, C.H. Domermuth, J.E. Pearson (American Association of Avian Pathologists, Kennett Square, 1989), p. 114

    Google Scholar 

  12. D.J. Alexander, R.J. Manvell, P.A. Kemp, G. Parsons, M.S. Collins, S. Brockman, P.H. Russell, S.A. Lister, Avian Pathol. 1, 553 (1987)

    Article  Google Scholar 

  13. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731 (2011)

    Article  PubMed  CAS  Google Scholar 

  14. Y. Yan, S.K. Samal, J. Virol. 82, 1323 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. J.C. Rassa, G.M. Wilson, G.A. Brewer, G.D. Parks, Virology 274, 438 (2000)

    Article  PubMed  CAS  Google Scholar 

  16. J.W. Walker, B.R. Heron, M.A. Mixon, Avian Dis. 17, 486 (1973)

    Article  PubMed  CAS  Google Scholar 

  17. P.J. Miller, E.L. Decanini, C.L. Afonso, Infect. Genet. Evol. 10, 26 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. A. Panda, Z. Huang, S. Elankumaran, D. Rockemann, S.K. Samal, Microb. Pathog. 36, 1 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. A. Panda, S. Elankumaran, S. Krishnamurthy, Z. Huang, S.K. Samal, J. Virol. 78, 4965 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. J.C. Pedersen, D.A. Senne, P.R. Woolcock, H. Kinde, D. King, M.G. Wise, B. Panigrahy, B.S. Seal, J. Clin. Microbiol. 42, 2329 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. J.C.F.M. Dortmans, P.J.M. Rottier, G. Koch, B.P.H. Peeters, J. Virol. 84, 10113 (2010)

    Article  PubMed  CAS  Google Scholar 

  22. J.C.F.M. Dortmans, P.J.M. Rottier, G. Koch, B.P.H. Peeters, J. Gen. Virol. 92, 336 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. P.J. Miller, L.M. Kim, H.S. Ip, C.L. Afonso, Virology 391, 64 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. N. P. Acha, B. Szyfres, Enfermedad de Newcastle. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales, vol. 2, 3ª edn. (Organización Panamericana de la Salud, Washington, DC, 2003), pp. 168–175

  25. J. Estudillo, A Newcastle disease outbreak in captive exotic birds, in Proceedings of the 21st West Poultry Disease Conference, University of California, 1972, pp. 70–73

  26. B. Nayak, F.M. Dias, S. Kumar, A. Paldurai, P.L. Collins, S.K. Samal, Vaccine 30, 2220 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Claudio L. Afonso for reviewing the manuscript. This study was supported by CONACYT (Grant Salud-2009-C02-126990) and by the Instituto Politecnico Nacional (Grand SIP-20121834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel E. Absalón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2012_782_MOESM1_ESM.eps

Phylogenetic analysis of 77 nucleotide sequences of the variable region of gene F (nucleotides 47-420) of class I and class II (Genotypes I – IX) of representative genomes. The evolutionary history was inferred using the Maximum Likelihood method based on the Kimura 2-parameter model. When the number of common sites was < 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise the BIONJ method with MCL distance matrix was used. The phylogenetic tree is drawn to scale with the highest log-likelihood (-4220.8699), with branch lengths measured as the number of substitutions per site (only shows the highest at 0.005). A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4757)). Evolutionary analyses were conducted in MEGA5 [13]. (EPS 2849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Absalón, A.E., Mariano-Matías, A., Vásquez-Márquez, A. et al. Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico. Virus Genes 45, 304–310 (2012). https://doi.org/10.1007/s11262-012-0782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0782-1

Keywords

Navigation