Skip to main content

Advertisement

Log in

Fosfomycin modifies the replication kinetics of bovine alphaherpesvirus-1 and reduces the timing of its protein expression on bovine (MDBK) and human (SH-SY5Y) cell lines

  • Research
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Bovine alphaherpesvirus 1 (BoAHV-1) predisposes cattle to respiratory secondary bacterial infections, which can be treated with the broad-spectrum antibiotic fosfomycin. This drug also suppresses NF-kB activity and pro-inflammatory responses. Therefore, cattle may be exposed to an interaction between the virus and the antibiotic which may have effects on it. The aim of this study was to determine the effect of calcium fosfomycin (580 µg/mL) on BoAHV-1 (moi = 0.1) replication. Two cell lines (MDBK and SH-SY5Y) were used in this study. Our results show that fosfomycin has novel properties. By MTT assay we have shown that it is non-cytotoxic for any of the cell lines. Extracellular and intracellular viral titers demonstrated that fosfomycin has a cell-type and time-dependent effect on BoAHV-1 replication. By direct immunofluorescence it was shown that it reduces the timing of BoAHV-1 protein expression, and by qPCR, we found that its effect on NF-kB mRNA expression depends on the cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Upon request to the corresponding author.

References

  • Adenis JP, Denis F, Franco JL, Mounier M (1986) Intraocular penetration of fosfomycin in man and rabbits. Bull Soc D’ophtalm Fr 9(8–9):533–537

    CAS  Google Scholar 

  • Adenis JP, Franco JL, Mathon C, Peigne G, Denis F (1987) Intra-ocular transit of fosfomycin in man and rabbit. Bull Soc D’ophtalm Fr 87(12):1415–1418

    CAS  Google Scholar 

  • Amurrio C, Nicolás R, Larrauri L, Lopez A, Cisterna R (1989) Effect of erythromycin and phosphomycin on the ingestion and destruction capacity of the human polymorphonuclear leukocyte. Enf Inf Microbiol Clín 7(7):374–376

    CAS  Google Scholar 

  • Baron D, Drugeon H (1985) Fosfomycine. Sem Des Hop Paris 61:2341–2349

    CAS  Google Scholar 

  • Bell RL, Turkington HL, Cosby SL (2021) The bacterial and viral agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 1(94):337. https://doi.org/10.3390/vaccines9040337

    Article  CAS  Google Scholar 

  • Chen T, Guo ZP, Li MM, Li JY, Jiao XY, Zhang YH, Liu HJ (2011) Tumour necrosis factor-like weak inducer of apoptosis (TWEAK), an important mediator of endothelial inflammation, is associated with the pathogenesis of Henoch-Schonlein purpura. Clin Exp Immunol 166(1):64–71. https://doi.org/10.1111/j.1365-2249.2011.04442.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Simone C, Manganaro M, Meli D, Ricca D, Capozzi C (1980) Influence of antibiotics on leukocyte migration. Boll Dell’ist Sieroter Milan 59(6):612–618

    Google Scholar 

  • Elweza AE, Ezz MA, Acosta TJ, Talukder AK, Shimizu T, Hayakawa H, Shimada M, Imakawa K, Zaghloul AH, Miyamoto A (2018) A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Mol Reprod Dev 85(3):215–226. https://doi.org/10.1002/mrd.22955

    Article  CAS  PubMed  Google Scholar 

  • Escolar-Jurado M, Azanza-Perea JR, Sádaba-Díaz de Rada B, Honorato-Pérez J (1998) Tetraciclinas, cloranfenicol y fosfomicina. Med. 7 (76): 3524–3532.

  • Falagas ME, Giannopoulou KP, Kokolakis GN, Petros IR (2008) Fosfomycin: use beyond urinary tract and gastrointestinal infections. Invited Article Rev Anti-inf Agents CID 46:1069–1077. https://doi.org/10.1086/527442

    Article  Google Scholar 

  • Fe Marques A (1994) Terapéutica experimental de osteomielitis por Pseudomonas aeruginosa: estudio de fosfomicina. Tesis Doctoral. Universidad Complutense de Madrid

  • Fernandez Paggi MB, Soraci A, Amanto F (2010) Estudio de la distribución de Fosfomicina en calostro de cerdas. Tesis. Facultad de Ciencias Veterinarias. Universidad Nacional del Centro de la Provincia de Buenos Aires

  • Ferreres L, Paz M, Martin G, Gobernado M (1977) New studies on placental transfer of fosfomycin. Chemother 23(1):175–179. https://doi.org/10.1159/000222044

    Article  Google Scholar 

  • Gobernado M (2003) Fosfomicina. Rev Esp Quimioter 16(1):115–140

    Google Scholar 

  • Guitérrez OL, Ocampo CL, Aguilera JR, Luna J, Sumano LH (2008) Pharmacokinetics of disodium-fosfomycin in mongrel dogs. Res Vet Sci. 85(1):156–61. https://doi.org/10.1016/j.rvsc.2007.08.011.

  • Höger PH, Seger RA, Schaad UB, Hitzig WH (1985) Chronic granulomatous disease: uptake and intracellular activity of fosfomycin in granulocytes. Ped Res 19(1):38–44. https://doi.org/10.1203/00006450-198501000-00011

    Article  Google Scholar 

  • Ilender (1998) Promotores de crecimiento. Notas Científicas 1:1–4 www.ilendercorp.com

    Google Scholar 

  • Ishizaka S, Takeuchi H, Kimoto M, Kanda S, Saito S (1998) Fosfomycin, an antibiotic, possessed TGF-beta-like immunoregulatory activities. Int J Immunopharm 20(12):765–779

    Article  CAS  Google Scholar 

  • Joukhadar C, Klein N, Dittrich P, Zeitlinger M, Geppert A, Skhirtladze K, Frossard M, Heinz G, Müller M (2003) Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 51(5):1247–1252. https://doi.org/10.1093/jac/dkg187

    Article  CAS  PubMed  Google Scholar 

  • Krause R, Patruta S, Daxböck F, Fladerer P, Wenisch C (2001) The effect of fosfomycin on neutrophil function. J Antimicrob Chemother 47(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ (2008) Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 373:239–247. https://doi.org/10.1016/j.virol.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  • Legat FJ, Maier A, Dittrich P, Zenahlik P, Kern T, Nuhsbaumer S, Frossard M, Salmhofer W, Kerl H, Müller M (2003) Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother 47(1):371–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucero-Diaz PA, Ramos E, Gallardo-Rincon D, Herendeen D, Borquez-Lopez G, Palacios D, De Leon G, Marquez-Manriquez JP (2016) IL-6 immunomodulation by antibiotics in advanced ovarian cancer patients. Chemother 29(3):208–212

    Google Scholar 

  • Lysitsas M, Chatzipanagiotidou I, Billinis C, Valiakos G (2023) Fosfomycin Resistance in Bacteria Isolated from Companion Animals (Dogs and Cats). Vet Sci. 9;10(5):337. https://doi.org/10.3390/vetsci10050337

  • Martínez G, Diéguez SN, Fernández Paggi MB, Riccio MB, Pérez Gaudio DS, Rodríguez E, Amanto FA, Tapia MO, Soraci AL (2019) Effect of fosfomycin, Cynara scolymus extract, deoxynivalenol and their combinations on intestinal health of weaned piglets. Anim Nutr 5(4):386–395

    Article  PubMed Central  PubMed  Google Scholar 

  • Mata J, Rodríguez A, Gallego A (1977) Fosfomycin: in vitro activity. Chemother 23:23–24

    Article  Google Scholar 

  • Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, Hirakata Y, Yamaguchi K (1999) Fosfomycin alters lipopolysaccharide induced inflammatory cytokine production in mice. Antimicrob Agents Chemother 43(3):697–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGuire K, Manuja A, Russell GC, Springbett A, Craigmile SC, Nichani AK, Malhotra D, Glass EJ (2004) Quantitative analysis of pro-inflammatory cytokine mRNA expression in Theileria annulata-infected cell lines derived from resistant and susceptible cattle. Vet Immunol Immunopathol 99(1–2):87–98. https://doi.org/10.1016/j.vetimm.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Haag R, Rahmanzadeh R (1989) Adjuvant fosfomycin medication in chronic osteomyelitis. Infectol 17(3):146–151

    Article  CAS  Google Scholar 

  • Morikawa K, Oseko F, Morikawa S, Sawada M (1993) Immunosuppressive activity of fosfomycin on human T-lymphocyte function in vitro. Antimicrob Agents Chemother 37(12):2684–2687. https://doi.org/10.1128/AAC.37.12.2684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morikawa K, Watabe H, Araake M, Morikawa S (1996) Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob Agents Chemother 40:1366–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moritz AJ (1986) Clinical pharmacology of fosfomycin. Proceedings of the International Symposium. Mexico. Libro Resumen. 63–76

  • Neuman M (1990) Farmacología clínica de los antibióticos. Rl. Mayo, S.A. Barcelona

  • Okabayashi T, Yokota S, Yoto Y, Tsutsumi H, Fujii N (2009) Fosfomycin suppresses chemokine induction in airway epithelial cells infected with respiratory syncytial virus. Clin Vac Immunol 16(6):859–865. https://doi.org/10.1128/CVI.00033-09

    Article  CAS  Google Scholar 

  • Pachota M, Grzywa R, Iwanejko J, Synowiec A, Iwan D, Kamińska K, Skoreński M, Bielecka E, Szczubiałka K, Nowakowska M, Mackereth CD, Wojaczyńska E, Sieńczyk M, Pyrć K (2023) Novel inhibitors of HSV-1 protease effective in vitro and in vivo. Antiviral Res 213:105604. https://doi.org/10.1016/j.antiviral.2023.105604

    Article  CAS  PubMed  Google Scholar 

  • Patravale V, Dandekar Jain R (2012) Nanotoxicology: evaluating toxicity potential of drug-nanoparticles. Nanoparticulate Drug Delivery. Perspectives on the transition from laboratory to market. Woodhead Publishing Series in Biomedicine, pp 123–155

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acid Res 30(9):e36. https://doi.org/10.1093/nar/30.9.e36

    Article  Google Scholar 

  • Popovic M, Steinort D, Pillai S, Joukhadar C (2010) Fosfomycin: an old, new friend?. Eur J Clin Microbiol Infect Dis. 29:127–142. https://doi.org/10.1007/s10096-009-0833-2

  • Pérez DS, Martínez G, Soraci AL, Tapia MO (2013) In vitro penetration of fosfomycin in IPEC J2 cells. Int J Med Pharm Sci 04(02):6–16

    Google Scholar 

  • Pérez DS, Soraci AL, Martínez G, Fernández Paggi MB, Riccio MB, Dieguez SN, Tapia MO (2015a) Intracellular concentrations of Fosfomycin in Alveolar Macrophages from Weaning Piglets. Res J in Vet Sci 1–7. https://doi.org/10.3923/rjvs.2015a

  • Pérez DS, Soraci AL, Martínez G, Fernández Paggi MB, Riccio MB, Dieguez S, Tapia MO (2015b) Penetration of the antibiotic fosfomycin into swine intestinal mucosa colonized with Lawsonia intracellularis. J Vet PharmTher Special Issue 38(S1):94. https://doi.org/10.1111/jvp.12247

    Article  Google Scholar 

  • Pérez DS, Soraci AL, Tapia MO (2012) In vitro penetration of fosfomycin in respiratory cells. The Pig J 67:43–53

    Google Scholar 

  • Pérez DS, Tapia MO, Soraci AL (2014) Fosfomycin: uses and potentialities in veterinary medicine. Open Vet Journal 4(1):26–43

    Google Scholar 

  • Pérez Gaudio D, Mozo J, Martínez G, Fernández Paggi MB, Decundo, JM, Romanelli A, Dieguez S & Soraci A (2020). Fosfomycin protects intestinal cells from nuclear changes suggestive of deoxynivalenol-induced apoptosis. J of Rep in Pharm Sci. 9(2):209–214. https://doi.org/10.4103/jrptps.JRPTPS_124_19

  • Pérez Gaudio DS, Martínez G, Fernández Paggi MB, Decundo JM, Romanelli A, Dieguez SN, Soraci AL (2018b) Ex vivo penetration of fosfomycin into healthy and Lawsonia intracellularis-colonized swine intestinal mucosa. J Vet Pharm Ther 41(6):878–886. https://doi.org/10.1111/jvp.12687

    Article  CAS  Google Scholar 

  • Pérez Gaudio DS, Martínez G, Fernández Paggi MB, Decundo JM, Romanelli A, Mozo J, Dieguez SN, Soraci AL (2019) Fosfomycin in vivo penetration in swine intestinal cells. Int J Vet Sci 8(3):134–137

    Google Scholar 

  • Pérez Gaudio DS, Martínez G, Fernández Paggi MB, Decundo JM, Romanelli A, Mozo J, Dieguez S, Soraci AL (2018a) Fosfomycin penetration into swine leukocytes. Int J App Res in Vet Med 16(2):159–165

    Google Scholar 

  • Pérez Gaudio DS, Martínez G, Soraci AL, Fernández Paggi MB, Riccio MB, Dieguez SN, Tapia MO (2016) Protective effect of fosfomycin in deoxynivalenol-treated cell cultures. Eur J Biom Pharm Sci 3(7):99–106

    Google Scholar 

  • Pérez Gaudio DS, Pérez SE, Mozo J, Martínez G, Decundo J, Romanelli A, Dieguez SN, Soraci AL (2021) Efecto de la fosfomicina sobre la cinética de replicación del alfaherpesvirus bovino-1. XIII Congreso Argentino de Virología 2021. Capital Federal, 29–30 de noviembre y 1 de diciembre de 2021

  • Queiroz GR, Pereira PFV, Flaiban KKMDC, Di Santis GW, Alfieri AA, Lisbôa JAN (2018) Cerebrospinal fluid changes in cattle with rabies or with BoHV-5 meningoencephalitis and its correlation with the severity of CNS inflammatory process. Res Vet Sci 118:389–394. https://doi.org/10.1016/j.rvsc.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  • Raz R (2012) Fosfomycin: an old-new antibiotic. Clin Microbiol Infectol 18:4–7. https://doi.org/10.1111/j.1469-0691.2011.03636.x

    Article  CAS  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J of Epidemiol 27(3):493–497

    Article  Google Scholar 

  • Righi C, Franzoni G, Feliziani F, Jones C, Petrini S (2023) The cell-mediated immune response against bovine alphaherpesvirus 1 (BoHV-1) infection and vaccination. Vaccines 11(4):785. https://doi.org/10.3390/vaccines11040785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rissi D, Pierezan F, Silva M, Furtado Flores E, Barros C (2008) Neurological disease in cattle in southern Brazil associated with bovine herpesvirus infection. J Vet Diag Inv 20:346–349. https://doi.org/10.1177/104063870802000315

    Article  Google Scholar 

  • Robert PY, Tassy A (2000) Biodisponibilite des antibiotiques. J Fr d’Ophtalm 23(5):510–513

    CAS  Google Scholar 

  • Rock D (1993) The molecular basis of latent infections by alphaherpesviruses. Sem Virol 4:157–165

    Article  CAS  Google Scholar 

  • Rosales JJ, Verna A, Marin M, Pérez S (2020) Bovine alphaherpesvirus type 5 replicates more efficiently than bovine alphaherpesvirus type 1 in undifferentiated human neural cells. Vir Res 286:198037. https://doi.org/10.1016/j.virusres.2020.198037

    Article  CAS  Google Scholar 

  • Sauermann R, Karch R, Langenberger H, Kettenbach J, Mayer-Helm B, Petsch M, Wagner C, Sautner T, Gattringer R, Karanikas G, Joukhadar C (2005) Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother 49(11):4448–4454. https://doi.org/10.1128/AAC.49.11.4448-4454.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnitzler P, Koch C, Reichling J (2007) Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob Agents Chemother 51:1859–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder RJ, Moys MD (1954) An acute upper respiratory infection of dairy cattle. J Am Vet Med Assoc 125:471–472

    CAS  PubMed  Google Scholar 

  • Sicilia T, Estévez E, Rodríguez A (1981) Fosfomycin penetration into the cerebrospinal fluid of patients with bacterial meningitis. Chemother 27(6):405–413

    Article  CAS  Google Scholar 

  • Soulère L, Barbier T, Queneau Y (2021) Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 MPro by targeting the cysteine 145. Comp Biol Chem 92. https://doi.org/10.1016/j.compbiolchem.2021.107463. 10)74 – 63

  • Steinwall O, Klatzo I (1966) Selective vulnerability of the blood-brain barrier in chemically induced lesions. J Neuropathol Exp Neurol 25(4):542–559. https://doi.org/10.1097/00005072-196610000-00004

    Article  CAS  PubMed  Google Scholar 

  • Thunuguntla P, El-Mayet FS, Jones C (2017) Bovine herpesvirus 1 can efficiently infect the human (SH-SY5Y) but not the mouse neuroblastoma cell line (Neuro-2A). Vir Res 15(232):1–5. https://doi.org/10.1016/j.virusres.2017.01.011

    Article  CAS  Google Scholar 

  • Traub WH, Spohr M (1983) Fosfomycin: interpretation of inhibition zones obtained with the Bauer-Kirby agar disk diffusion susceptibility test. Chemother 29(3):208–212. https://doi.org/10.1159/000238198

    Article  CAS  Google Scholar 

  • Trautmann M, Meincke C, Vogt K, Ruhnke M, Lajous-Petter AM (1992) Intracellular bactericidal activity of fosfomycin against Staphylococci: a comparison with other antibiotics. Infect 20(6):350–354

    Article  CAS  Google Scholar 

  • Tsegka KG, Voulgaris GL, Kyriakidou M, Falagas ME (2020) Intravenous fosfomycin for the treatment of patients with central nervous system infections: evaluation of the published evidence. Expert Rev Anti Infect Ther 18(7):657–668. https://doi.org/10.1080/14787210.2020.1754193

    Article  CAS  PubMed  Google Scholar 

  • Yamano Y, Machigashira K, Ijichi S, Usuku K, Kawabata M, Arimura K, Osame M (1997) Alteration of cytokine levels by fosfomycin and prednisolone in spontaneous proliferation of cultured lymphocytes from patients with HTLV-I-associated myelopathy (HAM/TSP). J Neurol Sci 22(2):163–167. https://doi.org/10.1016/s0022-510x(97)00118-4

    Article  Google Scholar 

  • Yokota S, Okabayashi T, Yoto Y, Hori T, Tsutsumi H, Fujii N (2010) Fosfomycin suppresses RS-virus-induced Streptococcus pneumoniae and Haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor. FEMS Microbiol Lett 310(1):84–90. https://doi.org/10.1111/j.1574-6968.2010.02049.x

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther 5:209. https://doi.org/10.1038/s41392-020-00312-6

    Article  CAS  Google Scholar 

  • Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ (2010) CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem. 22;285(43):33092–33103. https://doi.org/10.1074/jbc.M110.130377

Download references

Funding

This work was supported by the Secretaría de Ciencia, Arte y Tecnología de la Universidad Nacional del Centro de la Provincia de Buenos Aires (SECAT-UNCPBA) (Grant 03-JOVIN-77 H).

Author information

Authors and Affiliations

Authors

Contributions

D.P.G. had the original idea, performed the assays and wrote the manuscript. S.P. performed the assays and wrote the article. J.M., G.M., J.D., S.D and A.S. collaborated on the assays. J.M. and J.D. performed the statistical analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Denisa Pérez Gaudio.

Ethics declarations

Competing interests

Authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez Gaudio, D., Pérez, S., Mozo, J. et al. Fosfomycin modifies the replication kinetics of bovine alphaherpesvirus-1 and reduces the timing of its protein expression on bovine (MDBK) and human (SH-SY5Y) cell lines. Vet Res Commun 47, 1963–1972 (2023). https://doi.org/10.1007/s11259-023-10150-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-023-10150-w

Keywords

Navigation