Skip to main content
Log in

Formation of NET, phagocytic activity, surface architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2 and TLR4) in neutrophils of mastitic cows

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Neutrophils employ both oxidative and non oxidative mechanisms to destroy pathogens. Function of neutrophils coming in milk during mammary invasion is not clearly understood in dairy animals. Therefore, the present study was designed in 36 Sahiwal cows to see the changes occurring in the neutrophil activity of cows suffering from subclinical (SCM) and clinical mastitis (CM). Cows were divided into three groups as healthy (n = 12), SCM (n = 12) and CM (n = 12) groups on the basis of CMT scoring, gross morphological changes in milk, bacteriological examination of milk and by counting milk SCC. Significantly (P < 0.05) higher milk SCC, neutrophil percent and significantly (P < 0.05) lower viability of both blood and milk neutrophils were observed in CM group of cows as compared to SCM and control group of cows. Phagocytic activity (PA) was significantly (P < 0.05) higher in milk neutrophils of SCM and CM cows as compared to control cows. Toll like receptors 2 and 4 in blood and milk neutrophils were found to be significantly (P < 0.05) higher, whereas, apoptosis in terms of altered mitochondrial transmembrane potential, Caspase 3 and 7 activities were found to be significantly (P < 0.05) lower in CM cows. Alterations in surface architecture of neutrophils in terms of formation of pseudopods was observed by scanning electron microscope (SEM) and found to be higher in CM cows. Blood neutrophils were found to be spherical as compared to milk neutrophils. Formation of neutrophil extracellular trap (NETs) were found milk neutrophils of CM cows, whereas, SCM and healthy cows did not exhibit NET formation. The study indicated a positive correlation between lower neutrophil apoptosis and higher expression of TLR2 and TLR4 with the formation of NETs and change in surface architecture. Formation of NET like structures seemed to be an effective mode of defense employed by neutrophils of cows suffering from clinical mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Plate 1
Plate 2
PLATE 3
PLATE 4
PLATE 5
PLATE 6
PLATE 7
PLATE 8
PLATE 9
PLATE 10
PLATE 11

Similar content being viewed by others

References

  • Alluwaimi AM (2004) The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Res Vet Sci 77(3):211–22

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DD (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 87:10–25

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P (2004) Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intra mammary infection. Clin Diagn Lab Immunol 11:463–472

    PubMed Central  PubMed  Google Scholar 

  • Brinkmann VU, Reichard C, Goosmann B, Fauler Y, Uhlemann DS, Weiss YW, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Burton JL, Erskine RJ (2003) Immunity and mastitis. Some new ideas for an old disease. Vet Clin N Am Food Anim Pract 19:1–45

    Article  Google Scholar 

  • Burvenich C, Bannerman DD, Lippolis JD, Peelman L, Nonnecke BJ, Kehrli MEJ, Paape MJ (2007) Cumulative physiological events influence the inflammatory response of the bovine udder to Escherichia coli infections during the transition period. J Dairy Sci 90:E39–E54

    Article  PubMed  Google Scholar 

  • Dang AK, Kapila S, Tomar P, Singh C (2007) Relationship of blood and milk cell counts with mastitic pathogens in Murrah buffaloes. Ital J Anim Sci 6(2):821–824

    Google Scholar 

  • Dang AK, Mukherjee J, Kapila S, Mohanty AK, Kapila R, Prasad S (2010) In vitro phagocytic activity of milk neutrophils during lactation cycle in Murrah buffaloes of different parity. J Anim Physiol Nut 94:706–711

    Article  CAS  Google Scholar 

  • Dang AK, Prasad S, De K, Mukherjee J, Sandeep IVR, Mutoni G, Pathan MM, Jamwal M, Kapila S, Kapila R, Kaur H, Dixit S, Mohanty AK, Prakash BS (2012) Effect of supplementation of Vitamin E, copper and zinc on the in vitro phagocytic activity and lymphocyte proliferation index of peripartum Sahiwal (Bos indicus) cows. J Anim Physiol Nut. doi:10.1111/j.1439-0396.2011.01272.x

    Google Scholar 

  • de Souza FN, Sanchez EMR, Gidlund MA, Heinemann MB, Reis LC, Libera AMMPD, Cerqueira MMOP (2012) The innate immunity in bovine mastitis: the role of pattern-recognition receptors. Am J Immunol 8(4):166–178

    Article  Google Scholar 

  • DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413

    Article  CAS  PubMed  Google Scholar 

  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmon RJ (2001) Somatic cell counts: A primer. Proc. National Mastitis Council Annual Meeting, In, pp 3–9

    Google Scholar 

  • Hogeveen HK, Hujips K, Lam TJ (2011) Economic aspects of mastitis: New developments. NZ Vet J 59:16–23

    Article  CAS  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  • Kebir DEI, Filep JG (2013) Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cells 2:330–348

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43:25–61

    Article  PubMed  Google Scholar 

  • Kobayashi SD, Voyich JM, Burlak C, DeLeo FR (2005) Neutrophils in the innate immune response. Arch Immunol Ther Exp 53:505–517

    CAS  Google Scholar 

  • Lippolis JD, Reinhardt TA, Goff JP, Horst RL (2006) Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet Immunol Immunopathol 15,113(1–2):248–55

    Article  Google Scholar 

  • Mehrzad J, Duchateau L, Pyorola S, Burvenich C (2002) Blood and milk neutrophil chemiluminescence and viability in primiparous and pluriparous dairy cows during late pregnancy, around parturition and early lactation. J Dairy Sci 85:3268–3276

    Article  CAS  PubMed  Google Scholar 

  • Mehrzad J, Duchateau L, Burvenich C (2004) Viability of milk neutrophils and severity of bovine coliform mastitis. J Dairy Sci 87:4150–4162

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    CAS  PubMed  Google Scholar 

  • Paape MJ, Mehrzad J, Zhao X, Detileux J, Burvenich C (2002) Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia 7:109–121

    Article  PubMed  Google Scholar 

  • Paape MJ, Bannerman DD, Zhao X, Lee JW (2003) The bovine neutrophil: structure and function in blood and milk. Vet Res 34(5):597–627

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521

    Article  CAS  PubMed  Google Scholar 

  • Petzl W, Zerbe HJ, Guntler J, Yang W, Seyfert HM (2008) Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate defense in the udder of the cow. Vet Res 39:18

    Article  PubMed  Google Scholar 

  • Pyorala S (2003) Indicators of inflammation in the diagnosis of mastitis. Vet Res 34:565–578

    Article  PubMed  Google Scholar 

  • Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7(2):135–146

    Article  PubMed  Google Scholar 

  • Tian SZ, Chang CJ, Chiang CC, Peh HC, Huang MC, Lee JW, Zhao X (2005) Comparison of morphology, viability and function between blood and milk neutrophils from peak lactating goats. Canad J Vet Res 69:39–45

    Google Scholar 

  • Van Oostveldt K, Paape MJ, Dosogne H, Burvenich C (2002) Effect of apoptosis on phagocytosis, respiratory burst and CD18 adhesion receptor expression of bovine neutrophils. Domest Anim Endocrinol 22:37–50.

  • Zhao X, Lacasse P (2008) Mammary tissue damage during bovine mastitis: Causes and control. J Anim Sci 86(1):57–65

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Dr. V.V. Ramamurthy, Dept of Entomology, IARI, New Delhi for helping to carry out SEM of blood and milk neutrophils. We are also thankful to Dr. Sandhya Toki, PGI Chandigarh, for assisting in carrying out the flow cytometry. We are highly thankful to Department of Biotechnology, Ministry of Science and Technology, India (BT/PR13016/AAQ/01/411/2009) for providing financial support to carry out this study.

Conflict of Interest Statement

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip K. Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, D.K., Kushwah, M.S., Kaur, M. et al. Formation of NET, phagocytic activity, surface architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2 and TLR4) in neutrophils of mastitic cows. Vet Res Commun 38, 209–219 (2014). https://doi.org/10.1007/s11259-014-9606-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-014-9606-1

Keywords

Navigation