Skip to main content
Log in

Intellectual landscapes and emerging trends of non-steroidal mineralocorticoid receptor antagonists: a bibliometric and visual analysis

  • Nephrology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

With increasing studies, non-steroidal mineralocorticoid receptor (MR) antagonists have been increasingly recognized as a major novel dimension in cardiorenal disease therapy. This bibliometric analysis aimed to uncover current research status and identify future research directions in the study of non-steroidal MR antagonists to inform subsequent investigations.

Methods

Relevant English-language literature was retrieved from the Science Citation Index Expanded of the Web of Science Core Collection on January 10, 2024. Analyses of countries, institutions, authors, journals, documents, cited references and keywords were performed by the CiteSpace and VOSviewer software.

Results

Overall, 498 documents, including 297 articles and 201 reviews, were included and analyzed. The United States (n = 188), Bayer AG (n = 78), and Professor Peter Kolkhof (n = 59) were the most prolific country, institution, and author in this field, respectively. Cluster analysis of cited references identified major clusters like cardiovascular disease, chronic kidney disease, and omecamtiv mecarbil. Keyword analysis indicated that sodium–glucose transport protein (SGLT)-2 inhibitors, pharmacotherapy, clinical trial, and guideline have emerged recently.

Conclusion

The field of non-steroidal MR antagonists is gradually gaining momentum as a novel pharmacotherapy in cardiorenal diseases, especially diabetic kidney disease, hypertension, and heart failure. Future studies will focus on add-on pharmacotherapy by combining non-steroidal MR antagonists with SGLT-2 inhibitors and the development and publication of clinical guidelines to facilitate patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available upon reasonable request to the corresponding author.

References

  1. Terker AS, Ellison DH (2015) Renal mineralocorticoid receptor and electrolyte homeostasis. Am J Physiol Regul Integr Comp Physiol 309(9):R1068–R1070. https://doi.org/10.1152/ajpregu.00135.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorini S, Marzolla V, Mammi C, Armani A, Caprio M (2018) Mineralocorticoid receptor and aldosterone-related biomarkers of end-organ damage in cardiometabolic disease. Biomolecules 8(3):96. https://doi.org/10.3390/biom8030096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young MJ, Kanki M, Fuller PJ, Yang J (2021) Identifying new cellular mechanisms of mineralocorticoid receptor activation in the heart. J Hum Hypertens 35(2):124–130. https://doi.org/10.1038/s41371-020-0386-5

    Article  PubMed  Google Scholar 

  4. Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F (2022) Mineralocorticoid receptor antagonists in diabetic kidney disease—mechanistic and therapeutic effects. Nat Rev Nephrol 18(1):56–70. https://doi.org/10.1038/s41581-021-00490-8

    Article  CAS  PubMed  Google Scholar 

  5. Maron MS, Chan RH, Kapur NK et al (2018) Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy. Am J Med 131(7):837–841. https://doi.org/10.1016/j.amjmed.2018.02.025

    Article  CAS  PubMed  Google Scholar 

  6. Lund LH, Svennblad B, Melhus H, Hallberg P, Dahlström U, Edner M (2013) Association of spironolactone use with all-cause mortality in heart failure: a propensity scored cohort study. Circ Heart Fail 6(2):174–183. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000115

    Article  CAS  PubMed  Google Scholar 

  7. Oka T, Sakaguchi Y, Hattori K et al (2022) Mineralocorticoid receptor antagonist use and hard renal outcomes in real-world patients with chronic kidney disease. Hypertension 79(3):679–689. https://doi.org/10.1161/HYPERTENSIONAHA.121.18360

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Jing H, Sun Z et al (2021) A bibliometric analysis of primary aldosteronism research from 2000 to 2020. Front Endocrinol (Lausanne) 12:665912. https://doi.org/10.3389/fendo.2021.665912

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savarese G, Lindberg F, Filippatos G, Butler J, Anker SD (2024) Mineralocorticoid receptor overactivation: targeting systemic impact with non-steroidal mineralocorticoid receptor antagonists. Diabetologia 67(2):246–262. https://doi.org/10.1007/s00125-023-06031-1

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal R, Kolkhof P, Bakris G et al (2021) Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J 42(2):152–161. https://doi.org/10.1093/eurheartj/ehaa736

    Article  CAS  PubMed  Google Scholar 

  11. Kintscher U, Bakris GL, Kolkhof P (2022) Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol 179(13):3220–3234. https://doi.org/10.1111/bph.15747

    Article  CAS  PubMed  Google Scholar 

  12. Bakris GL, Agarwal R, Anker SD et al (2020) Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383(23):2219–2229. https://doi.org/10.1056/NEJMoa2025845

    Article  CAS  PubMed  Google Scholar 

  13. Pitt B, Filippatos G, Agarwal R et al (2021) Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 385(24):2252–2263. https://doi.org/10.1056/NEJMoa2110956

    Article  CAS  PubMed  Google Scholar 

  14. Luther JM, Fogo AB (2022) The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int Suppl (2011) 12(1):63–68. https://doi.org/10.1016/j.kisu.2021.11.006

    Article  PubMed  Google Scholar 

  15. Vukadinović D, Lavall D, Vukadinović AN, Pitt B, Wagenpfeil S, Böhm M (2017) True rate of mineralocorticoid receptor antagonists-related hyperkalemia in placebo-controlled trials: a meta-analysis. Am Heart J 188:99–108. https://doi.org/10.1016/j.ahj.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  16. Tesch GH, Young MJ (2017) Mineralocorticoid receptor signaling as a therapeutic target for renal and cardiac fibrosis. Front Pharmacol 8:313. https://doi.org/10.3389/fphar.2017.00313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barrera-Chimal J, Kolkhof P, Lima-Posada I, Joachim A, Rossignol P, Jaisser F (2021) Differentiation between emerging non-steroidal and established steroidal mineralocorticoid receptor antagonists: head-to-head comparisons of pharmacological and clinical characteristics. Expert Opin Investig Drugs 30(11):1141–1157. https://doi.org/10.1080/13543784.2021.2002844

    Article  CAS  PubMed  Google Scholar 

  18. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2024 April 24. Identifier NCT05047263, A Trial to Learn How Well Finerenone Works and How Safe it is in Adult Participants With Nondiabetic Chronic Kidney Disease (FIND-CKD). https://clinicaltrials.gov/study/NCT05047263

  19. Kintscher U (2023) Cardiovascular and renal benefit of novel non-steroidal mineralocorticoid antagonists in patients with diabetes. Curr Cardiol Rep 25(12):1859–1864. https://doi.org/10.1007/s11886-023-01998-0

    Article  PubMed  Google Scholar 

  20. Barrera-Chimal J, Bonnard B, Jaisser F (2022) Roles of mineralocorticoid receptors in cardiovascular and cardiorenal diseases. Annu Rev Physiol 84:585–610. https://doi.org/10.1146/annurev-physiol-060821-013950

    Article  CAS  PubMed  Google Scholar 

  21. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2024 April 24. Identifier NCT04435626, Study to Evaluate the Efficacy (Effect on Disease) and Safety of Finerenone on Morbidity (Events Indicating Disease Worsening) & Mortality (Death Rate) in Participants With Heart Failure and Left Ventricular Ejection Fraction (Proportion of Blood Expelled Per Heart Stroke) Greater or Equal to 40% (FINEARTS-HF). https://classic.clinicaltrials.gov/ct2/show/NCT04435626

  22. Teerlink JR, Diaz R, Felker GM et al (2021) Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med 384(2):105–116. https://doi.org/10.1056/NEJMoa2025797

    Article  CAS  PubMed  Google Scholar 

  23. Duggan S (2019) Esaxerenone: first global approval. Drugs 79(4):477–481. https://doi.org/10.1007/s40265-019-01073-5

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal R, Filippatos G, Pitt B et al (2022) Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 43(6):474–484. https://doi.org/10.1093/eurheartj/ehab777

    Article  CAS  PubMed  Google Scholar 

  25. Sun R, Li Y, Lv L, Zhang W, Guo X (2024) Efficacy and safety of esaxerenone (CS-3150) in primary hypertension: a meta-analysis. J Hum Hypertens 38(2):102–109. https://doi.org/10.1038/s41371-023-00889-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang X, Zhang Z, Li C et al (2022) Efficacy and safety of non-steroidal mineralocorticoid receptor antagonists in patients with chronic kidney disease and type 2 diabetes: a systematic review incorporating an indirect comparisons meta-analysis. Front Pharmacol 13:896947. https://doi.org/10.3389/fphar.2022.896947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Q, Liang Y, Yan J et al (2023) Efficacy and safety of non-steroidal mineralocorticoid receptor antagonists for renal outcomes: a systematic review and meta-analysis. Diabetes Res Clin Pract 195:110210. https://doi.org/10.1016/j.diabres.2022.110210

    Article  CAS  PubMed  Google Scholar 

  28. Pei H, Wang W, Zhao D, Wang L, Su GH, Zhao Z (2018) The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: a systematic review and meta-analysis. Medicine (Baltimore) 97(16):e0254. https://doi.org/10.1097/MD.0000000000010254

    Article  CAS  PubMed  Google Scholar 

  29. Ito S, Kashihara N, Shikata K et al (2020) Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol 15(12):1715–1727. https://doi.org/10.2215/CJN.06870520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rakugi H, Yamakawa S, Sugimoto K (2021) Management of hyperkalemia during treatment with mineralocorticoid receptor blockers: findings from esaxerenone. Hypertens Res 44(4):371–385. https://doi.org/10.1038/s41440-020-00569-y

    Article  CAS  PubMed  Google Scholar 

  31. Kolkhof P, Hartmann E, Freyberger A et al (2021) Effects of finerenone combined with empagliflozin in a model of hypertension-induced end-organ damage. Am J Nephrol 52(8):642–652. https://doi.org/10.1159/000516213

    Article  CAS  PubMed  Google Scholar 

  32. Palmer BF, Clegg DJ (2024) SGLT2 inhibition and kidney potassium homeostasis. Clin J Am Soc Nephrol 19(3):399–405. https://doi.org/10.2215/CJN.0000000000000300

    Article  PubMed  Google Scholar 

  33. Green JB, Mottl AK, Bakris G et al (2023) Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using a UACR Endpoint study (CONFIDENCE). Nephrol Dial Transplant 38(4):894–903. https://doi.org/10.1093/ndt/gfac198

    Article  CAS  PubMed  Google Scholar 

  34. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2024 April 24. Identifier NCT04595370, Efficacy, Safety and Tolerability of AZD9977 and Dapagliflozin in Participants With Heart Failure and Chronic Kidney Disease. https://classic.clinicaltrials.gov/ct2/show/NCT04595370

  35. Giugliano D, Maiorino MI, Bellastella G, Longo M, Chiodini P, Esposito K (2019) GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials. Diabetes Obes Metab 21(11):2576–2580. https://doi.org/10.1111/dom.13847

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

LLZ: data collection, data analysis, manuscript writing, PS: protocol development, manuscript editing.

Corresponding author

Correspondence to Ping Shi.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 63 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Shi, P. Intellectual landscapes and emerging trends of non-steroidal mineralocorticoid receptor antagonists: a bibliometric and visual analysis. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04059-9

Keywords

Navigation