Skip to main content

Advertisement

Log in

Metabolic implications of amino acid metabolites in chronic kidney disease progression: a metabolomics analysis using OPLS-DA and MBRole2.0 database

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

As chronic kidney disease (CKD) progresses, metabolites undergo diverse transformations. Nevertheless, the impact of these metabolic changes on the etiology, progression, and prognosis of CKD remains uncertain. Our objective is to conduct a metabolomics analysis to scrutinize metabolites and identify significant metabolic pathways implicated in CKD progression, thereby pinpointing potential therapeutic targets for CKD management.

Methods

We recruited 145 patients with CKD and determined their mGFR by measuring the plasma iohexol clearance, whereupon we partitioned them into four groups based on their mGFR values. Non-targeted metabolomics analysis was conducted using UPLC-MS/MS assays. Differential metabolites were identified via one-way ANOVA, PCA, PLS-DA, and OPLS-DA analyses employing the MetaboAnalyst 5.0 platform. Ultimately, we performed differential metabolite pathway enrichment analysis, using both the MetaboAnalyst 5.0 platform and the MBRole2.0 database.

Results

According to the findings of the MBRole2.0 and MetaboAnalyst 5.0 enrichment analysis, six amino acid metabolism pathways were discovered to have significant roles in the progression of CKD, with the glycine, serine, and threonine metabolism pathway being the most prominent. The latter enriched 14 differential metabolites, of which six decreased while two increased concomitantly with renal function deterioration.

Conclusions

The metabolic analysis unveiled that glycine, serine, and threonine metabolism plays a pivotal role in the progression of CKD. Specifically, glycine was found to increase while serine decreased with the deterioration of CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article material, further inquiries can be directed to the corresponding authors.

Code availability

Not applicable.

Abbreviations

ANOVA:

Analysis of variance

BMI:

Body mass index

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

ESI:

Electrospray ionization

FA:

Formic acid

GFR:

Glomerular filtration rate

HILIC:

Hydrophilic interaction chromatography

IAA:

Indole-3-acetic acid

IS:

Indoxyl sulphate

mGFR:

Measured glomerular filtration rate

5-MTP:

5-Methoxy tryptophan

m/z :

Mass to charge ratio

NF-κB:

Nuclear factor-κB

OPLS-DA:

Orthogonal partial least squares-discriminant analysis

OSC:

Orthogonal signal correction

PCA:

Principal component analysis

PCS:

p-Cresyl sulphate

PFPA:

Perfluoropentanoic acid

PLS-DA:

Partial least squares-discriminant analysis

RP:

Reversed-phase

TPH-1:

Tryptophan hydroxylase-1

UPLC-MS/MS:

Ultra performance liquid chromatograph tandem mass spectrometry

VIP:

Variable importance in the projection

References

  1. Wolf G (2006) Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 70(11):1914–1919. https://doi.org/10.1038/sj.ki.5001846

    Article  CAS  PubMed  Google Scholar 

  2. Chasapi SA, Karagkouni E, Kalavrizioti D, Vamvakas S, Zompra A, Takis PG, Goumenos DS, Spyroulias GA (2022) NMR-based metabolomics in differential diagnosis of chronic kidney disease (CKD) subtypes. Metabolites. https://doi.org/10.3390/metabo12060490

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalim S, Rhee EP (2017) An overview of renal metabolomics. Kidney Int 91(1):61–69. https://doi.org/10.1016/j.kint.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  4. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hocher B, Adamski J (2017) Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 13(5):269–284. https://doi.org/10.1038/nrneph.2017.30

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Zhong J, Chen L, Gu Y, Hong Y, Ma J, Zheng N, Liu AJ, Sheng L, Zhang W, Li H (2020) Effects of the Suxiao Jiuxin pill on acute myocardial infarction assessed by comprehensive metabolomics. Phytomedicine 77:153291. https://doi.org/10.1016/j.phymed.2020.153291

    Article  CAS  PubMed  Google Scholar 

  7. Song Y, Hu T, Gao H, Zhai J, Gong J, Zhang Y, Tao L, Sun J, Li Z, Qu X (2021) Altered metabolic profiles and biomarkers associated with astragaloside IV-mediated protection against cisplatin-induced acute kidney injury in rats: an HPLC-TOF/MS-based untargeted metabolomics study. Biochem Pharmacol 183:114299. https://doi.org/10.1016/j.bcp.2020.114299

    Article  CAS  PubMed  Google Scholar 

  8. Gupta N, Yadav DK, Gautam S, Kumar A, Kumar D, Prasad N (2023) Nuclear magnetic resonance-based metabolomics approach revealed the intervention effect of using complementary and alternative medicine (CAM) by CKD patients. ACS Omega 8(8):7722–7737. https://doi.org/10.1021/acsomega.2c06469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parker VJ, Fascetti AJ, Klamer BG (2019) Amino acid status in dogs with protein-losing nephropathy. J Vet Intern Med 33(2):680–685. https://doi.org/10.1111/jvim.15436

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rhee EP, Clish CB, Wenger J, Roy J, Elmariah S, Pierce KA, Bullock K, Anderson AH, Gerszten RE, Feldman HI (2016) Metabolomics of chronic kidney disease progression: a case-control analysis in the chronic renal insufficiency cohort study. Am J Nephrol 43(5):366–374. https://doi.org/10.1159/000446484

    Article  CAS  PubMed  Google Scholar 

  11. Chen DQ, Cao G, Chen H, Argyopoulos CP, Yu H, Su W, Chen L, Samuels DC, Zhuang S, Bayliss GP, Zhao S, Yu XY, Vaziri ND, Wang M, Liu D, Mao JR, Ma SX, Zhao J, Zhang Y, Shang YQ, Kang H, Ye F, Cheng XH, Li XR, Zhang L, Meng MX, Guo Y, Zhao YY (2019) Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nat Commun 10(1):1476. https://doi.org/10.1038/s41467-019-09329-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shah VO, Townsend RR, Feldman HI, Pappan KL, Kensicki E, Vander Jagt DL (2013) Plasma metabolomic profiles in different stages of CKD. Clin J Am Soc Nephrol 8(3):363–370. https://doi.org/10.2215/cjn.05540512

    Article  CAS  PubMed  Google Scholar 

  13. Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, Zhao YY (2019) Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 17(1):5. https://doi.org/10.1186/s12967-018-1756-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R, Qian L, Ge W, Liu W, Liang S, Chen H, Zhang Y, Li J, Xu J, He Z, Chen B, Wang J, Yan H, Zheng Y, Wang D, Zhu J, Kong Z, Kang Z, Liang X, Ding X, Ruan G, Xiang N, Cai X, Gao H, Li L, Li S, Xiao Q, Lu T, Zhu Y, Liu H, Chen H, Guo T (2020) Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182(1):59-72.e15. https://doi.org/10.1016/j.cell.2020.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, Xia J (2022) Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc 17(8):1735–1761. https://doi.org/10.1038/s41596-022-00710-w

    Article  CAS  PubMed  Google Scholar 

  16. López-Ibáñez J, Pazos F, Chagoyen M (2016) MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res 44(W1):W201-204. https://doi.org/10.1093/nar/gkw253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS (2016) Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 67(3):483–498. https://doi.org/10.1053/j.ajkd.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, Gao X, Zhu B, Lei XG, Gu Z, Cui W, Xu X, Li Z, Zhu B, Li Y, Chen S, Guo H, Zhang H, Sun J, Zhang M, Hui Y, Zhang X, Liu X, Sun B, Wang L, Qiu Q, Zhang Y, Li X, Liu W, Xue R, Wu H, Shao D, Li J, Zhou Y, Li S, Yang R, Pedersen OB, Yu Z, Ehrlich SD, Ren F (2020) Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69(12):2131–2142. https://doi.org/10.1136/gutjnl-2019-319766

    Article  CAS  PubMed  Google Scholar 

  19. Rysz J, Franczyk B, Ławiński J, Olszewski R, Ciałkowska-Rysz A, Gluba-Brzózka A (2021) The impact of CKD on uremic toxins and gut microbiota. Toxins (Basel). https://doi.org/10.3390/toxins13040252

    Article  PubMed  Google Scholar 

  20. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4(10):1551–1558. https://doi.org/10.2215/cjn.03980609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Letourneau P, Bataille S, Chauveau P, Fouque D, Koppe L (2020) Source and composition in amino acid of dietary proteins in the primary prevention and treatment of CKD. Nutrients. https://doi.org/10.3390/nu12123892

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kumar MA, Bitla AR, Raju KV, Manohar SM, Kumar VS, Narasimha SR (2012) Branched chain amino acid profile in early chronic kidney disease. Saudi J Kidney Dis Transpl 23(6):1202–1207. https://doi.org/10.4103/1319-2442.103560

    Article  PubMed  Google Scholar 

  23. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch-Margl W, Lattka E, Gieger C, Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann HE, Peters A, Suhre K, Li Y, Adamski J, Spector TD, Illig T, Wang-Sattler R (2012) Human serum metabolic profiles are age dependent. Aging Cell 11(6):960–967. https://doi.org/10.1111/j.1474-9726.2012.00865.x

    Article  CAS  PubMed  Google Scholar 

  24. Hirschel J, Vogel M, Baber R, Garten A, Beuchel C, Dietz Y, Dittrich J, Körner A, Kiess W, Ceglarek U (2020) Relation of whole blood amino acid and acylcarnitine metabolome to age, sex, BMI, puberty, and metabolic markers in children and adolescents. Metabolites. https://doi.org/10.3390/metabo10040149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Zhao M, Wang M, Zhao C (2016) Profiling analysis of amino acids from hyperlipidaemic rats treated with Gynostemma pentaphyllum and atorvastatin. Pharm Biol 54(10):2254–2263. https://doi.org/10.3109/13880209.2016.1152278

    Article  CAS  PubMed  Google Scholar 

  26. Holeček M, Vodeničarovová M (2020) Effects of low and high doses of fenofibrate on protein, amino acid, and energy metabolism in rat. Int J Exp Pathol 101(5):171–182. https://doi.org/10.1111/iep.12368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irving BA, Carter RE, Soop M, Weymiller A, Syed H, Karakelides H, Bhagra S, Short KR, Tatpati L, Barazzoni R, Nair KS (2015) Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism 64(6):720–728. https://doi.org/10.1016/j.metabol.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu B, Li AH, Metcalf GA, Muzny DM, Morrison AC, White S, Mosley TH, Gibbs RA, Boerwinkle E (2016) Loss-of-function variants influence the human serum metabolome. Sci Adv 2(8):e1600800. https://doi.org/10.1126/sciadv.1600800

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Juhanson P, Kepp K, Org E, Veldre G, Kelgo P, Rosenberg M, Viigimaa M, Laan M (2008) N-acetyltransferase 8, a positional candidate for blood pressure and renal regulation: resequencing, association and in silico study. BMC Med Genet 9:25. https://doi.org/10.1186/1471-2350-9-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samynathan R, Subramanian U, Venkidasamy B, Shariati MA, Chung IM, Thiruvengadam M (2022) S-allylcysteine (SAC) exerts renoprotective effects via regulation of TGF-β1/Smad3 pathway mediated matrix remodeling in chronic renal failure. Curr Pharm Des 28(8):661–670. https://doi.org/10.2174/1381612828666220401114301

    Article  CAS  PubMed  Google Scholar 

  31. Stenflo J, Lundwall A, Dahlbäck B (1987) beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc Natl Acad Sci USA 84(2):368–372. https://doi.org/10.1073/pnas.84.2.368

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manabe S, Marui Y, Ito Y (2003) Total synthesis of mannosyl tryptophan and its derivatives. Chemistry 9(6):1435–1447. https://doi.org/10.1002/chem.200390163

    Article  PubMed  Google Scholar 

  33. Cheng Y, Li Y, Benkowitz P, Lamina C, Köttgen A, Sekula P (2020) The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci Rep 10(1):12675. https://doi.org/10.1038/s41598-020-69559-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fürst P (1989) Amino acid metabolism in uremia. J Am Coll Nutr 8(4):310–323. https://doi.org/10.1080/07315724.1989.10720307

    Article  PubMed  Google Scholar 

  35. Ruberti B, Machado DP, Vendramini THA, Pedrinelli V, Marchi PH, Jeremias JT, Pontieri CFF, Kogika MM, Brunetto MA (2022) Serum metabolites characterization produced by cats CKD affected, at the 1 and 2 stages, before and after renal diet. Metabolites. https://doi.org/10.3390/metabo13010043

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zeng L, Yu Y, Cai X, Xie S, Chen J, Zhong L, Zhang Y (2019) Differences in serum amino acid phenotypes among patients with diabetic nephropathy, hypertensive nephropathy, and chronic nephritis. Med Sci Monit 25:7235–7242. https://doi.org/10.12659/msm.915735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasegawa S, Jao TM, Inagi R (2017) Dietary metabolites and chronic kidney disease. Nutrients. https://doi.org/10.3390/nu9040358

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim H, Yu B, Li X, Wong KE, Boerwinkle E, Seidelmann SB, Levey AS, Rhee EP, Coresh J, Rebholz CM (2022) Serum metabolomic signatures of plant-based diets and incident chronic kidney disease. Am J Clin Nutr 116(1):151–164. https://doi.org/10.1093/ajcn/nqac054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li T, Zhang W, Hu E, Sun Z, Li P, Yu Z, Zhu X, Zheng F, Xing Z, Xia Z, He F, Luo J, Tang T, Wang Y (2021) Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput Struct Biotechnol J 19:1002–1013. https://doi.org/10.1016/j.csbj.2021.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 81873631, 81370866, 81070612) and Science and Technology Plan Project of Guangzhou (Grant No. 202002020047, 202007040003), The Science and Technology Development Fund, Macau SAR (File no. 0032/2018/A1).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript. JK and XG: Conceptualization, methodology, and writing—original draft preparation. XL and HP: Funding acquisition. YD and CA: Visualization and Supervision. JL and TsT: Investigation. LT and TT: Data curation and Validation. XL and HP: Writing-review, funding, and editing.

Corresponding authors

Correspondence to Hongquan Peng or Xun Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The studies involving human participants were reviewed and approved by the Institutional Review Board of Ethics Commission of Kiang Wu Hospital (KWH 2018-001). The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Guo, X., Peng, H. et al. Metabolic implications of amino acid metabolites in chronic kidney disease progression: a metabolomics analysis using OPLS-DA and MBRole2.0 database. Int Urol Nephrol 56, 1173–1184 (2024). https://doi.org/10.1007/s11255-023-03779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03779-8

Keywords

Navigation